首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以多烯烃模拟聚乙炔链,用CNDO/2方法讨论了各种掺杂剂对聚乙炔性质的影响,掺杂剂使孤子宽度收缩变窄,且p型掺杂剂比n型掺杂剂的影响更大,掺杂剂影响聚乙炔链中的电荷密度波,使电荷主要集中分布于掺杂剂附近的碳原子上。掺杂碱金属时,掺杂剂原子的最高占据轨道与聚乙炔中孤子自旋轨道之间的作用由Li到K依次增强,解释了ESR实验结果。  相似文献   

2.
聚乙炔掺杂导电的双向机制   总被引:3,自引:0,他引:3  
提出了一种掺杂聚乙炔的双向导电机理。垂直聚乙炔分子链方向的电荷输运是通过掺杂原子(或分子)在链间振动实现的;平行分子链方向的电荷输运是通过电荷密度波的传播实现的。掺杂聚乙炔的电导率随掺杂剂与聚乙炔链之间电荷转移量的增大而增大。  相似文献   

3.
本文用半经验CNDO/2量子化学计算方法研究了各种掺杂剂对聚乙炔中孤子性质的影响。掺杂剂的存在使孤子的宽度变小, 且p型掺杂剂比n型掺杂剂的影响更大, 这主要是由于掺杂剂与聚乙炔链之间的电荷转移量不同造成的。  相似文献   

4.
曹镛  郭可珍 《化学学报》1988,46(5):445-451
用XPS(X射线光电子能谱法)研究了十余种掺杂聚乙炔的电荷转移过程, 发现对大部分掺杂剂, 由Cls谱裂分所计算的电荷转移量与掺杂剂的氧化电位直接相关. 一些强氧化性或过渡金属质子酸也符合这一规律, 同时观察到掺杂后这些氧化性质子酸本身发生价态变化. 因此这些质子酸的掺杂不是文南中所报道的质子酸机制而是氧化还原机制.所研究的若干种非氧化性或弱氧化性质子酸掺杂后电导率均较低, 这进一步表明掺杂过程中的电荷转移过程是产生高导聚乙炔的必要条件.  相似文献   

5.
掺杂剂对聚乙炔中电荷密度波的影响   总被引:2,自引:0,他引:2  
用CNDO/2方法研究了各种掺杂剂对聚乙炔中电荷密度波的影响,在掺杂剂附近的碳原子上出现较大的电荷密度,且p型比n型掺杂剂的影响更大,讨论了电荷波与导电性的关系。  相似文献   

6.
Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究   总被引:29,自引:1,他引:29  
采用溶胶凝胶法制备了Fe^3 /V^5 /TiO2复合纳米微粒作为光催化剂。光降解反应结果表明,其掺杂催化剂Fe^3 /V^5 /TiO2的光催化活性明显提高。光电化学研究显示,铁离子可以成为电荷陷阱,促进空穴的界面传递反应。适量钒离子掺杂使TiO2电极的光电流升高,导带中电子浓度的增大,加快了界面的电子传递反应。共掺杂催化剂中,Fe^3 、V^5 分别提供了空穴与电子的陷阱,同时加快了电子与空穴的界面传递反应,从 更有效地提高光催化活性。双组份共掺杂为提高TiO2光催化活性提供新的途径。  相似文献   

7.
The PtCl4 and H2PtCl6-6H2O doped polyacetylene were studied by X-ray photoelection spectroscopy and transmission electron microscopy. We found that both Pt 4f and Cl 2p peaks could be resolved into two components both with a splitting of ca. 1.5 eV. The higher binding energy components of Pt 4f peak is attributed to Pt4+ and the lower binding energy one to Pt2+ species. From quantitative analysis of the results of decomposition of both Pt 4f and Cl 2p peaks it was found that an atomic ratio of chlorine to platinum for Pt2+ species is (Cl) / (Pt) = 2 and that for Pt4+ species is (Cl) / (Pt) = 6 for both PtCl4 and H2PtCl6·6H2O doped polyacetylene. The C 1s peaks could be decomposed into two components separated by ca. 1 eV. The intensity of the higher binding energy component increased with increasing dopant concentration. These indicate that the platinum salt doping proceeds through charge transfer from polyacetylene chain to platinum atom resulting in a partial reduction from Pt4+ to Pt2+ state. The existence of PtCl2 cluster on the surface of the doped polyacetylene film was supported by transmission electron microscopy and electron diffraction observations. These results indicate that a random distribution of the dopant along the macromolecular chain, and the charge per carbon atom in the metallic region of doped polyacetylene has been estimated to be 0.2 |e|. From these results the mechanism of the PtCl3 and H2PtCl6·6H2O doping process in polyacetylene is clarified as follows: Thus the dopant anion in polyacetylene is PtCl,2? for both PtCl4 and H2PtCl6·6H2O doping.  相似文献   

8.
The electronic structure of doped‐oligoaniline with various dopants is investigated by means of DFT method. After doping by hydrochloric acid (HCl) and camphorsulfonic acid (HCSA), the alternation of bond‐lengths is decreased and the co‐planarity of adjacent aromatic rings is increased. The π‐conjugating effect is increased in the electronic nature of Ph‐N system because the electrons can be delocalized along the backbone of oligoaniline where the hydrogen bonds as a bridge transfer the electrons. The electronic structure of polaron and bipolaron conformation and their relative stability is discussed, indicating that the preferable conformation is dependant on various dopants. The calculation results reveal that there is a relatively stronger interaction between the organic dopant of HCSA and N atoms of PANI, and more charge transfer between PANI and HCSA is a reason for the fact that the conductivity of HCSA‐doped PANI is higher than that of HCl‐doped PANI. The doping mechanism is proposed based on the calculation results. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
The concept of the electronic-phase transition of the Hartree–Fock solution has been applied to an arbitrarily doped polyacetylene (PA) chain to examine the structural change of the polymer skeletons under such doping regimes. It has been found that the n-doped PA chain tends to suppress the generation of the charge-density wave (CDW ) phase, whereas the p-doped PA favors the CDW phase leading to the charged-soliton shape. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Atmospheric pressure photoionization (APPI) using a dopant enables both polar and nonpolar compounds to be analyzed by LC/MS. To date, the charge exchange ionization pathway utilized for nonpolar compounds has only been efficient under restrictive conditions, mainly because the usual charge exchange reagent ions--the dopant photoions themselves--tend to be consumed in proton transfer reactions with solvent and/or dopant neutrals. This research aims to elucidate the factors affecting the reactivities of substituted-benzene dopant ions; another, overriding, objective is to discover new dopants for better implementing charge exchange ionization in reversed-phase LC/MS applications. The desirable properties for a charge exchange dopant include low reactivity of its photoions with solvent and dopant neutrals and high ionization energy (IE). Reactivity tests were performed for diverse substituted-benzene compounds, with substituents ranging from strongly electron withdrawing (EW) to strongly electron donating (ED). The results indicate that both the tendency of a dopant's photoions to be lost through proton transfer reactions and its IE depend on the electron donating/withdrawing properties of its substituent(s): ED groups decrease reactivity and IE, while EW groups increase reactivity and IE. Exceptions to the reactivity trend for dopants with ED groups occur when the substituent is itself acidic. All told, the desirable properties for a charge exchange dopant tend towards mutual exclusivity. Of the singly-substituted benzenes tested, chloro- and bromobenzene provide the best compromise between low reactivity and high IE. Several fluoroanisoles, with counteracting EW and ED groups, may also provide improved performance relative to the established dopants.  相似文献   

11.
The doping mechanism of poly(p-diethynylbenzene), chemically doped with FeCl3, was investigated. Absorption, infrared, far infrared, Raman, X-ray photoelectron spectroscopies were used to determine the nature of the dopant in doped polymer. The experimental results suggest that the charge transfer reaction between the polymer chain and the dopant results in the formation of FeCl4 species, the π electron charge delocalization along the polymeric chain and the reduction of π-π* transition energy.  相似文献   

12.
本文采用EHMO/CO半经验计算方法,以准一维体系对梯形高聚物聚吩噻嗪(简称PTL)本征态及掺杂态电子能带进行了计算,讨论了PTL的导电机理,提出了当掺杂剂为质子酸时的荷电孤子或极化子导电模型及p-型掺杂时的极化子导电模型。  相似文献   

13.
New azobenzene sulfonic acid dopants were synthesized by diazotized coupling reaction of sulphanilic acid diazonium salt with commercially available raw materials such as phenol, m-cresol and 4-phenylphenol. The structures of the dopants are confirmed by NMR and FT-IR. Polyaniline emeraldine base was doped by these new azobenzenesulfonic acid dopants in two different solvent medium such as methanol and N-methylpyrrolidinone to produce green emeraldine salt. The doping process was confirmed by FT-IR and UV-vis spectroscopy. The effect of composition of dopant on the conductivity of the polyaniline was investigated and the results suggest that the conductivity increases with the increase in the dopant concentration and attained maxima for more than 38% in the feed. The conductivity measurements reveal that all the dopants equally effective in producing in high conductivity in the range of 0.02 S/cm and the conductivity of the doped samples are insignificant to the structural difference in the dopant. WXRD and SEM analysis indicate that the doped samples are highly amorphous and porous in nature. The thermal analysis by TGA indicate that all the doped materials were highly stable up to 300 °C for high temperature applications.  相似文献   

14.
本研究采用溶胶 凝胶法制备含铁离子的二氧化钛多孔纳米薄膜,并将其作为光催化剂,光降解反应结果表明,含铁二氧化钛复合纳米薄膜的光催化活性明显提高.光电化学研究表明,铁离子可以形成电荷陷阱,促进空穴的界面传递反应,从而提高了光催化活性.  相似文献   

15.
Development of a silica-based material suitable for thermoluminescence dosimetry (TLD) is described. Doped silica samples were prepared in-house using the sol–gel technique. Results from a micro-X-ray fluorescence (μ-XRF) study of Zn-doped silica have confirmed the capability of the sol–gel processing steps in producing homogeneously doped samples. The ability of sol–gel processing in producing doped samples with different dopant charge states has been illustrated in the case of copper (I)- and copper (II)-doped silica samples. The charge states of the dopants have been verified using the technique of X-ray absorption near-edge structure (XANES). X-ray diffraction (XRD) investigations have shown the structure of samples doped with erbium, copper (I) and copper (II) (listed in order of decreasing effect) to be altered by the dopants, albeit with the samples remaining in an amorphous state. Local structure studies, carried out using the method of extended X-ray absorption fine structure (EXAFS), reveal that in most cases the local environment of the dopant is similar to the respective native structure of the respective metal oxides. Conversely, in a number of cases, the dopant atoms occupy the silicon sites in the silica tetragonal geometry. Thermoluminescence (TL) studies were carried out on aluminium, copper (I), germanium, manganese, tin, and zinc-doped silica samples. Weight for weight, the most sensitive thermoluminescent material was found to be 4.0 mol% aluminium-doped silica, providing 3.5 times the TL yield of TLD100 and 5.4 times that of germanium-doped silica. The photon dose response of aluminium-doped silica was observed to be linear over the range of investigated dose, 0.5–10.0 Gy.  相似文献   

16.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

17.
Energy transfer and triplet exciton confinement in polymer/phosphorescent dopant systems have been investigated. Various combinations of host‐guest systems have been studied, consisting of two host polymers, poly(vinylcarbazole) (PVK) and poly[9,9‐bis(octyl)‐fluorene‐2,7‐diyl] (PF), blended with five different phosphorescent iridium complexes with different triplet energy levels. These combinations of hosts and dopants provide an ideal situation for studying the movement of triplet excitons between the host polymers and dopants. The excitons either can be confined at the dopant sites or can flow to the host polymers, subject to the relative position of the triplet energy levels of the material. For PF, because of its low triplet energy level, the exciton can flow back from the dopants to PF when the dopant has a higher triplet energy and subsequently quench the device efficiency. In contrast, efficient electrophosphorescence has been observed in doped PVK films because of the high triplet energy level of PVK. Better energy transfer from PVK to the dopants, as well as triplet exciton confinement on the dopants, leads to higher device performance than found in PF devices. Efficiencies as high as 16, 8.0, and 2.6 cd/A for green, yellow, and red emissions, respectively, can be achieved when PVK is selected as the host polymer. The results in this study show that the energy transfer and triplet exciton confinement have a pronounced influence on the device performance. In addition, this study also provides material design and selection rules for the efficient phosphorescent polymer light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2681–2690, 2003  相似文献   

18.
自从1981年A.Prón等人用三氯化铁掺杂钛系聚乙炔而得到高电导率掺杂聚乙炔以来,对此掺杂聚乙炔的低温电性能已作了一定的研究。不同作者所报道结果可分为两类:一类报道各种掺杂量聚乙炔的电导率均随温度降低而单调减少;另一类则观察到随温度的降低电导率约在200K时出现最大值(增加5%),接着电导率降低。新近我们报导了三氯化铁掺杂的稀土聚乙炔的基本特性。本文进一步对此掺杂稀土聚乙炔的低温电性能作了研究,观察到与上述两种情况相似但不完全相同的结果。  相似文献   

19.
A bicomponent mixture in the orthoconic aniferroelectric phase, based on three-ring esters with fluorine atoms and ether group in a nonchiral chain, was doped with a variety of cyano-terminated compounds containing different numbers of phenyl rings in a rigid core and a terminal chain of different chirality. Compounds with two chiral chains were added to the basic mixture. The influence of the structure and concentration of dopant on the temperature-dependence of helical parameters, such as helical pitch and twist sense, were assessed by spectrophotometric and polarimetric methods. Long cyano-terminated compounds were found to be better than the other dopants tested for improving the usable properties of the antiferroelectric mixtures.  相似文献   

20.
The dynamics of a polyacetylene single chain as a system for possible physical implementations of quantum bits is determined. This novel proposition is studied by varying intensity and duration of application of an electric field as well as the intensity, number, and position in the polymer chain of impurity molecules. The behavior of soliton pairs, whose associated energy levels form the quantum bit, is analyzed. The chain is modeled by a modified Pariser-Parr-Pople Hamiltonian extended to include the effects of an external electric field and the parameters of the impurity molecules. The effect of the variation of the field and impurities on the separation of the energy levels associated with soliton pairs is analyzed by numerical integration of the equations of motion. Two different approaches for controlling the separation of levels are presented, and their features compared. First, the use of changes in the electric field to control the distance (and ultimately coupling) between two solitons moving freely on the chain or captured by the potential generated by the impurity molecules. Second, the change in the intensity of the impurities alone, with no application of an external field. We have found that the effect of the use of the field on the separation of levels is much smaller than the one obtained by changes in the parameters of the impurity molecules, which eventually led us to achieve quantum bit behavior in a polyacetylene chain. The influence of the field and impurity parameters in the energy levels is determined, as well as their role in the coupling of the two solitons on the chain. Critical values for distance between solitons, intensity of field, and impurities that determine whether a pair of solitons can work as a quantum bit are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号