首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
提出了偏分势能面的概念,偏分势能面可由完全势能面抽取出来,也可采用abinitio方法进行构造.作为范例,给出了F+H2→FH+H,H+H2→H2+H,I+HI→IH+I及Na+I2→Na++I-等体系中几种偏分势能面的构造和应用.2可以看到,应用偏分势能面对于分析反应机理及散射共振态的生成方面显示突出优点.  相似文献   

2.
利用神经网络力法,基于47783个高精度从头算能量点构建了反应体系H+CH4←→H2+CH3的一个全域势能面.通过大最的准经典轨线以及量子散射计算测试了势能面的收敛性质.这个势能面对于拟合过程以及从头算点的数目都已经完全收敛,拟合误差很小县比Shepard插值的势能面计算速度更快,代表了此标志性多原子反应体系最好的势能面.  相似文献   

3.
提出了两体扰动势的概念.通过两体扰动势构造多原子相互作用体系解析势的理论方法,获得了非线性三原子H2O相互作用体系的解析势函数.用势能面正确描述了O(1D)+H2→H2O→OH+H通道反应的性质.理论分析和实验结果非常符合.该方法比较容易推广构造多原子相互作用体系解析势.  相似文献   

4.
提出了两体扰动势的概念.通过两体扰动势构造多原子相互作用体系解析势的理论方法,获得了非线性三原子H2O相互作用体系的解析势函数.用势能面正确描述了O(1D)+H2→H2O→OH+H通道反应的性质.理论分析和实验结果非常符合.该方法比较容易推广构造多原子相互作用体系解析势.  相似文献   

5.
在QCISD(T)//MP2水平下,分别采用6-311 G基组和SDD基组对重-轻-重反应I HI(p=0)→IH(√=0) I中的H和I的偏分势能面进行了abinitio计算.指认出在0~0.58eV碰撞能范围内所产生的6个散射共振态为Feshbach共振,并与文献报道的量子散射理论计算与高分辨阈值光分离光谱实验结果进行了比较.  相似文献   

6.
研究势能面拓扑结构对认识势能面的复杂性,分析势能面的关键区域,简化量化计算以及了解反应机理等都具有极其重要的意义*.近些年来,关于势能面反应途径分又研究表明:势能面拓扑结构失稳会导致反应途径分叉,从而使得分子体系出现一系列新的现象和规律[’-’].根本上来说,势能面拓扑结构最终由临界点的拓扑性质以及其数目所决定[‘1.因而研究势能面临界点的种类及其变化有至关重要的作用·本文用微分动力学系统定性方法分析了势能面上临界点的拓扑结构类型,并给出平面线性线系统势能面拓扑结构失稳的条件;针对三原子A+BZ反…  相似文献   

7.
应用两体扰动势,成功地构造了线性三原分子CO_2平衡态及通道反应的三原子 体系相互作用解析热。势函数不但定量地描述了CO_2平衡态的临界特性,而且势能 面正确的描述了O(~1D)+CO(X~1∑+)→CO_2→C(~3P)+O_2(X~3∑-_g)通道反应的性 质。理论分析与实验推测结果非常吻合。  相似文献   

8.
王泽新  张晓明  乔青安  贾红英 《化学学报》2003,61(10):1567-1571
应用两体扰动势,成功地构造了线性三原分子CO_2平衡态及通道反应的三原子 体系相互作用解析热。势函数不但定量地描述了CO_2平衡态的临界特性,而且势能 面正确的描述了O(~1D)+CO(X~1∑+)→CO_2→C(~3P)+O_2(X~3∑-_g)通道反应的性 质。理论分析与实验推测结果非常吻合。  相似文献   

9.
介绍一个针对高年级本科生的物理化学探索性实验。通过计算化学手段构建H3反应势能面,使学生初步掌握Gaussian03W,Gaussview5.0和Origin软件的使用,深入理解反应过渡态理论,并进一步了解目前势能面的研究动态。  相似文献   

10.
在 QCISD ( T) / / MP2水平下 ,分别采用 6-3 1 1 ++G* * 基组和 SDD基组对重 -轻 -重反应 I+HI(ν=0 )→ IH(ν′=0 ) +I中的 H和 I的偏分势能面进行了 ab initio计算 ,指认出在 0~ 0 .5 8e V碰撞能范围内所产生的 6个散射共振态为 Feshbach共振 ,并与文献报道的量子散射理论计算与高分辨阈值光分离光谱实验结果进行了比较 .  相似文献   

11.
张春芳  马海涛  边文生 《化学进展》2012,24(6):1082-1093
势能面是化学反应动力学研究的基础。近年来随着理论方法的发展与计算技术的进步,不但含三、四个原子反应体系的电子基态势能面的构建精度进一步提高,一些反应体系的多电子态耦合势能面的构建和含六个原子以上反应体系的高维从头算势能面的构建也取得了重要进展。本文结合若干典型体系势能面的构建工作,主要介绍了高精度电子基态势能面,包括Renner-Teller、旋轨耦合等非绝热效应的耦合势能面以及高维势能面方面的研究进展。  相似文献   

12.
本文在H-Li(100)面吸附扩散的ab initio SCF势能面基础上构造了(H_2H+H)/Li(100)面相互作用的推广LEPS势能面,并用QCT方法研究了该体系的反应动力学行为。分析势能面特征得到:H_2在Li(100)面上的吸附无需活化能,H_2在Li(100)面上的解离吸附与吸附位及吸附模式密切相关,H_2的卧式解离比立式解离要容易得多。分析各种碰撞轨迹得到:低覆盖度下双氢原子的表面复合几率很小,H_2的表面解离几率受到H_2振动量子数的控制。本文构造了一种适合于动力学研究的气体-金属表面相互作用势能面,并且,动力学QCT计算结果能够对H_2表面活化的分子束实验作出合理的解释。  相似文献   

13.
在自然碰撞坐标下构建偏分势能面, 利用数值传播方法求解沿反应坐标的核运动方程, 然后用过渡态波函数的相移因子构造反应体系共振态寿命矩阵. 这是一种直接计算化学反应散射共振寿命的量子散射方法. 用此方法计算了I+HI(υ)→IH(υ’)+I体系的第一散射共振态寿命, 所得数值与Neumark 的高分辨阈值光分离光谱实验的结果相一致.  相似文献   

14.
基于最新的6SEC势能面,用邓从豪等提出的LCAC-SW方法计算得到了共线反应F+H~2(v=0)→HF(v')+H的态-态反应几率,计算结果准确地反映出势能面的特点,进一步证明LCAC-SW方法是一成功的量子散射方法。  相似文献   

15.
提升势能面的运行速度对于动力学模拟至关重要. 相对于计算简单、 但耗时更长的数值梯度计算, 直接求解势能面梯度的解析公式能够大幅提高势能面的运行效率. 本文发展了基本不变量神经网络解析梯度的生成方法. 计算解析梯度的代码可以通过程序自动生成. 对大量数据点进行测试后, 证明了该方法可以得到正确的势能面梯度输出结果. 通过测试不同势能面的调用时间, 发现采用解析梯度方法能够带来10倍以上的性能提升. 随着体系的增大, 这种性能提升也会越明显.  相似文献   

16.
岳红  蔡政亭  孙孝敏 《中国科学B辑》2009,39(12):1647-1651
在大气化学如燃烧反应和对流层各种有机化合物的降解中,HO+HoH→HoH+oH这一反应的研究格外受到关注.我们用abinitio方法构建了该体系的偏分势能面,并用其过渡区域里的动态Eyring湖解释散射共振态的形成机理,同时给出了共振能数据,估算了第一共振寿命.另外,我们还研究了同位素反应H^18O+HOH→H^18OH+OH和DO+HOH→DOH+OH.鉴于上述两个反应能够影响到等温层水中同位素的成分,HO+HOH→HOH+OH反应模型的建立对于理解O原子同位素的抽提反应有着重要的意义.  相似文献   

17.
介绍了近年来发展起来的新一代密度泛函XYG3及利用神经网络构造分子体系势能面的最新进展。以H3和CH5等体系为实例,表明基于高效准确的密度泛函电子结构计算,与神经网络高精度势能面构造的理想结合,可以得到可靠的化学动力学结果,并有望用于更大更复杂的体系。  相似文献   

18.
利用泵浦-探测和时间分辨的红外化学技术研究了H与SO_2的反应.测量了高振动态SO的粒子布居及OH的振动布居.并按照从头计算的结果,构造了模型势能面.在此势能面上,对此体系进行了经典轨迹理论计算.理论结果与实验有比较好的符合.  相似文献   

19.
采用密度泛函理论B3LYP方法和6-311+G(d)基组, 计算构建离子-分子气相反应NO3-+Cl2→ClONO2+Cl-的三维势能面. 三维反应势能面证明该反应没有过渡态和势能垒, 但是存在一个深达-55.0 kJ/mol的势能阱(以氯气分子和硝酸根离子相隔无穷远为参量). 在势能阱底部, 有个化合物(O2NOClCl)- 称为势阱化合物, 依赖于势能阱而稳定存在. 理论红外光谱预测低温红外光谱能检测该势阱化合物. 低温条件下, 该反应由热力学控制, 反应产物是势阱化合物(O2NOClCl)-. 当温度升高, 该反应由动力学控制, 势阱化合物(O2NOClCl)-不稳定, 发生分解反应, 重新生成NO3-和Cl2. 研究结果可用来解释低温时ClONO2与Cl-气相反应不能产生Cl2的原因.  相似文献   

20.
在G2(B3LYP/MP2/CC)水平上对反应HCCO O2进行了计算,得到了反应势能面,提出了3种可能的反应机理:(1)四元环反应机理得到产物P1(HCO CO2);(2)三元环反应机理得到产物P2(CO HCO2);(3)O-O键断裂反应机理得到产物P3(O OCC(O)H)和P4(O CO HCO).由反应势能面推测产物P1(HCO CO2)为主要产物,产物P2(CO HCO2),P3(O OCC(O)H)P4(O CO HCO)为次要产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号