首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
PdCl42-配离子插层类水滑石的组装及其结构特征   总被引:2,自引:0,他引:2  
以Mg0.76Al0.24(OH)2(NO3)0.24·0.32H2O LDHs为前体,由离子交换法实现了层间为含Pd阴离子LDHs的插层组装。用XRD、FT-IR、TG-DTA和ICP等手段对样品进行表征和分析,结果表明Pd以PdCl42-的形式位于层间,反应24 h达到最大插层限度,配离子平面平行于层板排布,3个PdCl42-配离子构成的几何空间的中心存在1个NO3-离子以维持插层结构能量最低。所得插层产物的化学组成式为Mg0.74Al0.26(OH)2(PdCl4)0.11(NO3)0.04·0.62H2O。  相似文献   

2.
通过X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱仪表征发现,经水合肼(N2H4·H2O)和亚硫酸钠(Na2SO3)两种还原剂处理碘酸根插层水滑石的产物分别为碘离子插层的水滑石(ZnAl-ILDHs)和硫酸根离子插层水滑石(ZnAl-SO4LDHs)。进一步研究表明,N2H4·H2O和水滑石的反应为D7模型的核外层扩散反应,N2H4·H2O在水滑石微球界面和IO3-发生反应。而Na2SO3则先进入了水滑石层间,然后与层间的IO3-反应,其模型符合D11动力学模型。  相似文献   

3.
MgFe-Cl-LDHs的合成、结构及其插层组装性能研究   总被引:2,自引:0,他引:2  
合成出了层间含Cl-的MgFe型层状双羟基氢氧化物(MgFe-Cl-LDHs),通过X射线衍射(XRD)、红外光谱(FT-IR)、热重及差热分析(TG-DTA)和元素分析等手段对其组成和结构特征进行了分析。研究表明:在共沉淀条件下,可制得晶体结构规整的MgFe-Cl-LDHs,且其结构规整性随组成中Mg2+/Fe3+物质的量比的增大而增强;LDHs层板六配位的金属离子与层板羟基层、层板羟基层与层间结构水的相互作用不随Mg2+/Fe3+物质的量比的改变而改变,而层板主体与层间客体阴离子之间的静电引力随Mg2+/Fe3+物质的量比的增大而降低。另外,其超分子结构特征使层间Cl-能与有机阴离子CH2CHC6H4SO3-和CH3(CH2)11SO3-发生离子交换,形成以双分子层垂直于层板的交错有序的排布结构模式。  相似文献   

4.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   

5.
采用恒pH值共沉淀法和非恒pH值共沉淀法制备了ZnO-ZrO2混合氧化物催化剂,考察了制备方法对乙醇转化制异丁烯反应的影响,并用低温N2吸附、X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、拉曼光谱、紫外-可见漫反射光谱、NH3程序升温脱附和CO2程序升温脱附对催化剂进行了表征。研究结果表明,相比于非恒pH值共沉淀法制备的ZnO-ZrO2,恒pH值共沉淀法制备的ZnO-ZrO2具有较高的比表面积,更多的酸量和碱量,从而表现出更好的乙醇转化制异丁烯催化性能。在450℃和乙醇质量空速0.2 h-1的反应条件下,两种催化剂的乙醇转化率均为100%,恒pH值共沉淀法制备的催化剂的异丁烯得率为54.9%,明显高于非恒pH值共沉淀法制备的催化剂(45.7%),并且稳定性也是前者明显高于后者。  相似文献   

6.
柠檬酸络合法制备La2CuO4纳米晶   总被引:1,自引:0,他引:1  
以硝酸镧和硝酸铜为起始原料,柠檬酸为络合剂,采用溶胶-凝胶法制备了La2CuO4纳米晶。通过X射线衍射、场发射扫描电子显微镜、透射电子显微镜研究了柠檬酸的加入量对La2CuO4纳米粉体相组成、显微结构的影响,并采用Kissinger方法研究了La2CuO4纳米晶的合成活化能。结果表明:600 ℃煅烧保温2 h后,可获得单一物相的La2CuO4,晶粒为类钙钛矿型结构,晶粒尺寸为60~80 nm,分布集中;在制备过程中提高柠檬酸的加入量能够降低La2CuO4晶体的合成活化能,当柠檬酸与溶液中阳离子(La3+和Cu2+)的物质的量的比由1∶1增加至1.5∶1时,La2CuO4纳米晶的合成活化能由147.0 kJ·mol-1降低到133.4 kJ·mol-1。  相似文献   

7.
γ-Al2O3表面原位合成Ni-Al-CO3LDHs研究   总被引:1,自引:0,他引:1  
Ni-Al-CO3LDHs/γ-Al2O3have been prepared using an in-situ synthesis technique. NH3·H2O was chosen as activation agent of Al on the γ-Al2O3surface as well as precipitant. Ni-Al-CO3LDHs/γ-Al2O3was synthesized by controlling the reaction conditions such as temperature, concentration of Ni2+ and initial pH. The crystalline structure, chemical composition and porous structure were characterized by means of XRD, FT-IR, TG-DTA, 27Al MAS-NMR and N2 adsorption-desorption. The resulting sample of Ni-Al-CO3LDHs/γ-Al2O3possesses higher specific area and narrower pore distribution, in which Ni-Al-CO3LDHs are located on the surface of γ-Al2O3and share the same Al-O bonds with the γ-Al2O3lattice. Finally a possible structural model was proposed to account for the porous characters of Ni-Al-CO3LDHs/γ-Al2O3.  相似文献   

8.
磁性固体超强酸SO42-/ZrO2-Al2O3-Fe3O4的制备与性能研究   总被引:3,自引:0,他引:3  
利用化学共沉淀法将磁性基质与固体酸组装制备磁性纳米固体超强酸催化剂,利用XRD、Raman、TG-DSC、M?ssbauer、TEM、HRTEM等手段对样品性质进行表征。结果表明:磁性基质的引入赋予固体超强酸以超顺磁性;Fe3O4、Al2O3粒子弥散在ZrO2基质中,烧结过程中阻碍了扩散传质的进行以及晶界移动,抑制了ZrO2晶体生长,稳定了四方晶相(T-ZrO2);样品粒径分布集中,平均约为32 nm;HRTEM显示T-ZrO2晶体生长取向于(101)方向,晶面间距d(101)=0.29 nm;Hammett指示剂法测得经600 ℃焙烧后产物的酸强度Ho<-13.8,酸强度大于浓硫酸(Ho=-11.93)。以柠檬酸三丁酯的合成作为磁性固体超强酸SO42-/ZrO2-Al2O3-Fe3O4催化剂的探针反应,结果表明外磁场的引入提高了柠檬酸的转化率。  相似文献   

9.
用一种简单的共沉淀法制备出了层状LiNi1/2Mn1/2O2材料,并且用XRD、SEM、循环充放电、循环伏安(CV)和电化学阻抗谱(EIS)等方法对材料进行了表征测试。首先,用共沉淀法制备氢氧化镍和氢氧化锰的混合物;然后,对共沉淀溶液进行预氧化来制备前驱体;最后,用预氧化的前驱体合成了LiNi1/2Mn1/2O2材料。SEM和XRD测试结果分别表明:LiNi1/2Mn1/2O2材料是粒径范围在100~200 nm之间的球形粒子,并且具有非常好的层状结构。循环充放电表明:在空气中900 ℃下合成时间为9 h的材料,在充放电截止电压为2.8~4.6 V的情况下,经过40次循环,材料的容量可以稳定地保持在140 mAh·g-1左右。循环伏安曲线表明:在锂的初始脱嵌和入嵌过程中存在不可逆相变。电化学阻抗谱测试表明LiNi1/2Mn1/2O2具有很好的锂离子扩散能力。  相似文献   

10.
以Mg-Al-NO3水滑石(LDHs)为载体,将5-氟尿嘧啶(5-FU)通过离子交换法插入其层间,得5-FU/LDHs缓释材料。并对水滑石表面进行弱酸预处理改性,利用XRD、FTIR、TG-DSC、SEM和零电荷点(pHPZC)等表征手段,考察酸预处理对水滑石表面化学性质及微观结构的影响。结果表明,5-FU/LDHs的层间距从0.858nm扩大到1.064nm,层间5-FU2阴离子与主体层板通过氢键与静电作用,以呈一定角度单层交替排列于层间。酸预处理的水滑石粒径变小,层板正电荷密度增大。5-FU的释放机理是物理扩散、离子交换和药物溶解等协同作用,酸预处理可提高水滑石的缓释性能和稳定性。  相似文献   

11.
Cathode materials Li[CoxMn1−x]O2 for lithium secondary batteries have been prepared by a new route—precursor method of layered double hydroxides (LDHs). In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with mass spectrometry (TG-MS) were used to monitor the structural transformation during the reaction of CoMn LDHs and LiOH·H2O: firstly the layered structure of LDHs transformed to an intermediate phase with spinel structure; then the distortion of the structure occurred with the intercalation of Li+ into the lattice, resulting in the formation of layered Li[CoxMn1−x]O2 with α-NaFeO2 structure. Extended X-ray absorption fine structure (EXAFS) data showed that the Co-O bonding length and the coordination number of Co were close to those of Mn in Li[CoxMn1−x]O2, which indicates that the local environments of the transitional metals are rather similar. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation state of Co and Mn. The influences of Co/Mn ratio on both the structure and electrochemical property of Li[CoxMn1−x]O2 have been investigated by XRD and electrochemical tests. It has been found that the products synthesized by the precursor method demonstrated a rather stable cycling behavior, with a reversible capacity of 122.5 mAh g−1 for the layered material Li[Co0.80Mn0.20]O2.  相似文献   

12.
The low-cost, high-abundance and durable layered double hydroxides (LDHs) have been considered as promising electrocatalysts for oxygen evolution reaction (OER). However, the easy agglomeration of lamellar LDHs in the aqueous phase limits their practical applications. Herein, a series of ternary NiCoFe LDHs were successfully fabricated on nickel foam (NF) via a simple electrodeposition method. The as-prepared Ni(Co0.5Fe0.5)/NF displayed an unique nanoarray structural feature. It showed an OER overpotential of 209 mV at a current density of 10 mA cm−2 in alkaline solution, which was superior to most systems reported so far. As evidenced by the XPS and XAFS results, such excellent performance of Ni(Co0.5Fe0.5)/NF was attributed to the higher Co3+/Co2+ ratio and more defects exposed, comparing with Ni(Co0.5Fe0.5)-bulk and Ni(Co0.5Fe0.5)-mono LDHs prepared by conventional coprecipitation method. Furthermore, the ratio of Co to Fe could significantly tune the Co electronic structure of Ni(CoxFe1-x)/NF composites (x=0.25, 0.50 and 0.75) and affect the electrocatalytic activity for OER, in which Ni(Co0.5Fe0.5)/NF showed the lowest energy barrier for OER rate-determining step (from O* to OOH*). This work proposes a facile method to develop high-efficiency OER electrocatalysts.  相似文献   

13.
An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3-sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.  相似文献   

14.
The development of nanocomposite photocatalyst based on layered double hydroxides (LDHs) associated with TiO2 was the subject of this research. The thermally activated Zn–Al LDHs were selected as catalyst support precursor because of their proven photocatalytic activity and therefore their possible contribution to overall activity of novel Ti–Zn–Al nanocomposite. The catalyst precursor (Zn–Al LDH) was synthesized by low supersaturation coprecipitation method, and its association with active TiO2 component targeting the formation of novel Ti–Zn–Al nanocomposite was achieved by wet impregnation. Simultaneous thermal analysis (TG–DTA) was used to investigate the thermal behavior of Zn–Al LDH and Ti–Zn–Al LDHs. Complementary, morphology, texture, and structure characterization was carried out. The photocatalytic test reaction was performed under UV light using the methylene blue degradation. The results confirmed a successful impregnation of TiO2 on catalyst support precursor Zn–Al–LDH followed by considerable change in morphology and structure of Zn–Al LDH precursor. It was concluded that the synergic effect between TiO2 and Zn–Al LDH precursor contributes to the overall photocatalytic activity.  相似文献   

15.
A core-shell structured magnetic layered organic-inorganic material involving 5-aminosalicylic acid (5-ASA) intercalated Zn-Al layered double hydroxides (LDHs) and magnesium ferrite (MgFe2O4) is assembled by a coprecipitation method. The powder X-ray diffraction results show the coexistence of the clear but weak diffractions of MgFe2O4 and ordered relatively stronger reflections of 5-ASA intercalated LDHs. The TEM image of magnetic 5-ASA intercalated LDHs reveals that the LDHs layer covers the MgFe2O4 particles or their aggregates with particle size of 50-80 nm. The vibration sample magnetization (VSM) measurements exhibit the increase in saturation magnetization of magnetic 5-ASA intercalated LDHs samples with increasing amount of magnetic core. The XPS analyses account for a majority of Zn, Al and O atoms on the surface of magnetic particles. It is suggested that the magnetic core MgFe2O4 was coated with LDHs layer probably through Zn-O-Mg and Al-O-Mg linkages, and a core-shell structured model is tentatively proposed.  相似文献   

16.
A ZnAl‐LDHs (layered double hydroxides) phase was readily formed on the surface of a USY zeolite through a distinctive in situ growth method that benefitted from the interaction of the added Zn source and aluminum species extracted from the Al‐rich USY zeolite crystals. The migration of aluminum and simultaneous interaction with the external Zn source took place in one pot to form a ZnAl‐LDHs phase coated on the surface of the USY crystals. Upon calcination, the ZnAl‐LDHs phase was transformed into a ZnO/Al2O3 composite that was still firmly anchored on the USY zeolite, without sacrificing the core–shell structure. The resultant USY@ZnO/Al2O3 materials gave rise to unique Lewis acidity and hierarchical porosity, which endowed the catalyst with promising performance in the Baeyer–Villiger oxidation of ketones with H2O2 or bulky tert‐butyl hydroxide as an oxidant.  相似文献   

17.
5-sulfosalicylic acid (SSA) anions have been intercalated into layered double hydroxides (LDHs) by an anion-exchange reaction using ZnAl-NO3-LDHs as a precursor. The samples were characterized by XRD, FT-IR, TG-DTA/MS and UV-visible spectroscopy. The results show that the NO3 anions in the precursor have been completely replaced by SSA anions to give ZnAl-SSA-LDHs having a high degree of crystallinity. Detailed studies reveal the existence of a supramolecular structure in ZnAl-SSA-LDHs involving electrostatic attraction between opposite charges, hydrogen bonding and other weak chemical bonding interactions between host layers and SSA anions. The thermal stability of ZnAl-SSA-LDHs is considerably enhanced compared with that of a mixture of ZnAl-NO3-LDHs and SSA. After addition of 2.0 wt% ZnAl-SSA-LDHs to polypropylene (PP), the resistance of the polymer to UV degradation is significantly improved.  相似文献   

18.
In this paper, naproxen was intercalated into Zn–Al layered double hydroxides (LDHs) by ion exchange method to obtain naproxen/LDHs nanohybrids. The effects of the contact time, the composition, and the structural charge density (σ S,T ) and the specific surface area of LDHs, and pH value on the uptake of naproxen on LDHs, and the release of naproxen from the naproxen/LDHs nanohybrids were investigated. The adsorption isotherm curves of naproxen on the LDHs obey the Langmuir equation, and apparent monolayer capacity (A m) in units of mmol m−2 increases with the increase of the σ S,T value of the LDHs samples. The release rate of naproxen from the naproxen/LDHs nanohybrids decreases with the increase of the σ S,T value of the LDHs samples and is much lower than that of naproxen troche, indicating that the naproxen/LDHs nanohybrid is an efficient drug-controlled release system. In the pH range of 6~11.5, the uptake amount (A eq) of naproxen on the LDHs decreases with the increase of pH value. The A m values of LDHs(Cl) are much higher than that of , which may contribute to that LDHs(Cl), which has a stronger anion exchange ability than . The naproxen molecules are possibly adsorbed on each surface of the basal layer of LDHs. In other words, a bilayer is formed in the gallery of LDHs.  相似文献   

19.
The supramolecular framework [Cu2(TU)4?·?(TAA)4] n (TU?=?thiourea; TAA?=?2-(2-imino-4-oxo-5-thiazolidinylidene)acetic anion) has been synthesized by reaction of CuCl2?·?2H2O with meso-2,3-dibromosuccinic acid and thiourea. The one-dimensional supramolecular structure of the title complex is constructed through bridge-linkage of the S atoms on the thioureas between adjacent Cu(II) atoms, forming an infinite chain with lots of positive charges. Around the infinite chain, there are four groups of negatively charged hydrogen-bond tubes constructed by four TAA anions. The hydrogen-bond and ionic interactions between adjacent metal-organic polymeric chains and hydrogen-bond tubes form the three-dimensional supramolecular structure of the complex. Supramolecular selectivity from isomers of 2-(2-imino-4-oxo-5-thiazolidinylidene)acetic anion (TAA) has been studied by quantum calculation.  相似文献   

20.
The effect of electrolytes (NaCl and CaCl2) and polymers (CPAM and HPAM) on the thixotropy of Mg‐Al‐layered double hydroxide (LDHs)/kaolinite dispersions has been investigated. It was observed that the type of thixotropy in LDH/kaolinite dispersions may be affected by NaCl, but not by CaCl2 in range of concentration of interest. The type of thixotropy in LDH/kaolinite dispersion with R=0 transformed from positive thixotropy to complex thixotropy and at last positive thixotropy again with the concentration of NaCl in range of 0.00–0.10 mol·L−1; the type of thixotropy in LDHs/kaolinite dispersions with R=0.25 transformed from complex thixotropy to positive thixotropy and then complex thixotropy again with the concentration of NaCl in range of 0.00–0.10 mol·L−1. The type of thixotropy in LDH/kaolinite dispersion with R=0 may be not affected by cationic polyacrylamide (CPAM) and hydrolyzed polyacrylamide (HPAM); but the LDHs/kaolinite dispersions with R=0.25 transformed from complex thixotropy to positive thixotropy with the both polymers concentration in range of interest, which indicated that the microstructure of the dispersion changed from weak folc sediments structure to steric network structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号