首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this article, we describe a series of complex salts in which electron-rich {Fe(II)(CN)(5)}(3)(-) centers are coordinated to pyridyl ligands with electron-accepting N-methyl/aryl-pyridinium substituents. These compounds have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands. The relatively large static first hyperpolarizabilities, beta(0), increase markedly on moving from aqueous to methanol solutions, accompanied by large red-shifts in the MLCT transitions. Acidification of aqueous solutions allows reversible switching of the linear and NLO properties, as shown via both HRS and Stark experiments. Time-dependent density functional theory and finite field calculations using a polarizable continuum model yield relatively good agreement with the experimental results and confirm the large decrease in beta(0) on protonation. The Stark-derived beta(0) values are generally larger for related {Ru(II)(NH(3))(5)}(2+) complexes than for their {Fe(II)(CN)(5)}(3)(-) analogues, consistent with the HRS data in water. However, the HRS data in methanol show that the stronger solvatochromism of the Fe(II) complexes causes their NLO responses to surpass those of their Ru(II) counterparts upon changing the solvent medium.  相似文献   

2.
We have prepared a number of new dipolar complexes containing ethynyl or buta-1,3-diynyl units linking electron-rich {Ru(II)(NH3)5}2+, trans-{Ru(II)(NH3)4L}+ (L = pyridine or N-methylimidazole), or trans-{Ru(II)Cl(pdma)2}+ [pdma = 1,2-phenylenebis(dimethylarsine)] centers to pyridinium electron acceptors. In acetonitrile solutions at 295 K, the new complexes display unusual blue-shifting of their metal-to-ligand charge-transfer (MLCT) bands as the conjugation is extended, in a fashion similar to that of the corresponding ethenyl systems. Hyper-Rayleigh scattering (HRS) and Stark spectroscopic measurements provide direct and indirect estimates of static first hyperpolarizabilities beta0, and both the linear and nonlinear optical (NLO) properties are temperature- and medium-dependent. Thus, at 77 K in butyronitrile glasses, the MLCT bands display more normal red shifts upon conjugation extension. While the Stark-derived beta0 values generally increase as n (the number of ethynyl units) increases from 0 to 2, the HRS data show maximization at n = 1 for two of the ammine series but an increase upon moving from n = 1 to 2 for the pdma complexes. Comparisons with the analogous ethenyl chromophores show that the latter generally display larger beta0 values, whether determined via HRS or Stark data, and the inferiority of the ethynyl systems in terms of NLO response is more pronounced when n = 2. This differing behavior is attributable primarily to larger increases in the transition dipole moment mu12 (and, hence, donor-acceptor pi-electronic coupling) on elongation in the ethenyl chromophores.  相似文献   

3.
A series of mono-, bis-, tris-, and tetrakis(porphinato)zinc(II) (PZn)-elaborated ruthenium(II) bis(terpyridine) (Ru) complexes have been synthesized in which an ethyne unit connects the macrocycle meso carbon atom to terpyridyl (tpy) 4-, 4'-, and 4'-positions. These supermolecular chromophores, based on the ruthenium(II) [5-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2'-terpyridine)(2+) bis-hexafluorophosphate (RuPZn) archetype, evince strong mixing of the PZn-based oscillator strength with ruthenium terpyridyl charge resonance bands. Potentiometric and linear absorption spectroscopic data indicate that for structures in which multiple PZn moieties are linked via ethynes to a [Ru(tpy)(2)](2+) core, little electronic coupling is manifest between PZn units, regardless of whether they are located on the same or opposite tpy ligand. Congruent with these experiments, pump-probe transient absorption studies suggest that the individual RuPZn fragments of these structures exhibit, at best, only modest excited-state electronic interactions that derive from factors other than the dipole-dipole interactions of these strong oscillators; this approximate independent character of the component RuPZn oscillators enables fabrication of nonlinear optical (NLO) multipoles with extraordinary hyperpolarizabilities. Dynamic hyperpolarizability (β(λ)) values and depolarization ratios (ρ) were determined from hyper-Rayleigh light scattering (HRS) measurements carried out at an incident irradiation wavelength (λ(inc)) of 1300 nm. The depolarization ratio data provide an experimental measure of chromophore optical symmetry; appropriate coupling of multiple charge-transfer oscillators produces structures having enormous averaged hyperpolarizabilities (β(HRS) values), while evolving the effective chromophore symmetry from purely dipolar (e.g., Ru(tpy)[4-(Zn-porphyrin)ethynyl-tpy](PF(6))(2), β(HRS) = 1280 × 10(-30) esu, ρ = 3.8; Ru(tpy)[4'-(Zn-porphyrin)ethynyl-tpy](PF(6))(2), β(HRS) = 2100 × 10(-30) esu, ρ = 3.8) to octopolar (e.g., Ru[4,4'-bis(Zn-porphyrin)ethynyl-tpy](2)(PF(6))(2), β(HRS) = 1040 × 10(-30) esu, ρ = 1.46) via structural motifs that possess intermediate values of the depolarization ratio. The chromophore design roadmap provided herein gives rise to octopolar supermolecules that feature by far the largest off-diagonal octopolar first hyperpolarizability tensor components ever reported, with the effectively octopolar Ru[4,4'-bis(Zn-porphyrin)ethynyl-tpy](2)(PF(6))(2) possessing a β(HRS) value at 1300 nm more than a factor of 3 larger than that determined for any chromophore having octopolar symmetry examined to date. Because NLO octopoles possess omnidirectional NLO responses while circumventing the electrostatic interactions that drive bulk-phase centrosymmetry for NLO dipoles at high chromophore concentrations, the advent of octopolar NLO chromophores having vastly superior β(HRS) values at technologically important wavelengths will motivate new experimental approaches to achieve acentric order in both bulk-phase and thin film structures.  相似文献   

4.
Nine nonlinear optical (NLO) chromophores with pyridinium electron acceptors have been synthesized by complexing new proligands with {Ru(II)(NH(3))(5)}(2+) electron-donor centers. The presence of long alkyl/fluoroalkyl chain substituents imparts amphiphilic properties, and these cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Each complex shows three reversible/quasireversible redox processes; a Ru(III/II) oxidation and two ligand-based reductions. The energies of the intense visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions correlate to some extent with the ligand reduction potentials. (1)H NMR spectroscopy also provides insights into the relative electron-withdrawing strengths of the new ligands. Single crystal X-ray structures have been determined for two of the proligand salts and one complex salt, [Ru(II)(NH(3))(5)(4-C(16)H(33)PhQ(+))]Cl(3)·3.25H(2)O (PhQ(+) = N-phenyl-4,4'-bipyridinium), showing centrosymmetric packing structures in each case. The PF(6)(-) analogue of the latter complex has been used to deposit reproducibly high-quality, multilayered Langmuir-Blodgett (LB) thin films. These films show a strong second harmonic generation (SHG) response from a 1064 nm laser; their MLCT absorbance increases linearly with the number of layers (N) and I(2ω)/I(ω)(2) (I(2ω) = intensity at 532 nm; I(ω) = intensity at 1064 nm) scales quadratically with N, consistent with homogeneous deposition. LB films on indium tin oxide (ITO)-coated glass show electrochemically induced switching of the SHG response, with a decrease in activity of about 50% on Ru(II) → Ru(III) oxidation. This effect is reversible, but reproducible over only a few cycles before the signal from the Ru(II) species diminishes. This work extrapolates our original solution studies (Coe, B. J. et al. Angew. Chem., Int. Ed.1999, 38, 366) to the first demonstration of redox-switching of NLO activity in a molecular material.  相似文献   

5.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

6.
Novel polynuclear complexes of rhenium and ruthenium containing PCA (PCA = 4-pyridinecarboxaldehyde azine or 4-pyridinealdazine or 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a bridging ligand have been synthesized as PF(6-) salts and characterized by spectroscopic, electrochemical, and photophysical techniques. The precursor mononuclear complex, of formula [Re(Me(2)bpy)(CO)(3)(PCA)](+) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), does not emit at room temperature in CH(3)CN, and the transient spectrum found by flash photolysis at lambda(exc) = 355 nm can be assigned to a MLCT (metal-to-ligand charge transfer) excited state [(Me(2)bpy)(CO)(3)Re(II)(PCA(-))](+), with lambda(max) = 460 nm and tau < 10 ns. The spectral properties of the related complexes [[Re(Me(2)bpy)(CO)(3)}(2)(PCA)](2+), [Re(CO)(3)(PCA)(2)Cl], and [Re(CO)(3)Cl](3)(PCA)(4) confirm the existence of this low-energy MLCT state. The dinuclear complex, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(II)(NH(3))(5)](3+), presents an intense absorption in the visible spectrum that can be assigned to a MLCT d(pi)(Ru) --> pi(PCA); in CH(3)CN, the value of lambda (max) = 560 nm is intermediate between those determined for [Ru(NH(3))(5)(PCA)](2+) (lambda(max) = 536 nm) and [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](4+) (lambda(max) = 574 nm), indicating a significant decrease in the energy of the pi-orbital of PCA. The mixed-valent species, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(III)(NH(3))(5)](4+), was obtained in CH(3)CN solution, by bromine oxidation or by controlled-potential electrolysis at 0.8 V in a OTTLE cell of the [Re(I),Ru(II)] precursor; the band at lambda(max) = 560 nm disappears completely, and a new band appears at lambda(max) = 483 nm, assignable to a MMCT band (metal-to-metal charge transfer) Re(I) --> Ru(III). By using the Marcus-Hush formalism, both the electronic coupling (H(AB)) and the reorganization energy (lambda) for the metal-to-metal intramolecular electron transfer have been calculated. Despite the considerable distance between both metal centers (approximately 15.0 Angstroms), there is a moderate coupling that, together with the comproportionation constant of the mixed-valent species [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](5+) (K(c) approximately 10(2), in CH(3)CN), puts into evidence an unusual enhancement of the metal-metal coupling in the bridged PCA complexes. This effect can be accounted for by the large extent of "metal-ligand interface", as shown by DFT calculations on free PCA. Moreover, lambda is lower than the driving force -DeltaG degrees for the recombination charge reaction [Re(II),Ru(II)] --> [Re(I),Ru(III)] that follows light excitation of the mixed-valent species. It is then predicted that this reverse reaction falls in the Marcus inverted region, making the heterodinuclear [Re(I),Ru(III)] complex a promising model for controlling the efficiency of charge-separation processes.  相似文献   

7.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

8.
The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2'-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether ligands maintain their tendency to fold themselves even in solution. The bis-mu-chloro dimers 1 and 2 show a spin-allowed but Laporte-forbidden t(2g)(6)((1)A(1g))--> t(2g)(5) e(g)(1)((1)T(1g), (1)T(2g)) d-d transition. They also display an intense Ru(II) dpi--> py/bzim (pi*) metal-to-ligand charge transfer (MLCT) transition. The mononuclear complexes 3-8 exhibit dpi-->pi* MLCT transitions in the range 340-450 nm. The binuclear complexes 1 and 2 exhibit a ligand field ((3)MC) luminescence even at room temperature, whereas the mononuclear complexes 3 and 4 show a ligand based radical anion ((3)MLCT) luminescence. The binuclear complexes 1 and 2 undergo two successive oxidation processes corresponding to successive Ru(II)/Ru(III) couples, affording a stable mixed-valence Ru(II)Ru(III) state (K(c): 1, 3.97 x 10(6); 2, 1.10 x 10(6)). The mononuclear complexes 3-7 exhibit only one while 8 shows two quasi-reversible metal-based oxidative processes. The coordinated 'soft' thioether raises the redox potentials significantly by stabilising the 'soft' Ru(II) oxidation state. One or two ligand-based reduction processes were also observed for the mononuclear complexes.  相似文献   

9.
We investigated the effects of antitumor-active tetrazolato-bridged dinuclear platinum(II) complexes [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-tetrazolato-N(1),N(2))](2+) (1) and [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-tetrazolato-N(2),N(3))](2+) (2) on the higher-order structure of a large DNA molecule (T4 phage DNA, 166 kbp) in aqueous solution through single-molecule observation by fluorescence microscopy. Complexes 1 and 2 cause irreversible compaction of DNA through an intermediate state in which coil and compact parts coexist in a single DNA molecule. The potency of compaction is in the order 2 > 1 ? cisplatin. Transmission electron microscopic observation showed that both complexes collapsed DNA into an irregularly packed structure. Circular dichroism measurements revealed that the dinuclear platinum(II) complexes change the secondary structure of DNA from the B to C form. These characteristics of platinum(II) complexes are markedly different from those of the usual condensing agents such as spermidine(3+) and [Co(III)(NH(3))(6)](3+). The ability to cause DNA compaction by the platinum(II) complexes is discussed in relation to their potent antitumor activity.  相似文献   

10.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

11.
[Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.  相似文献   

12.
The mechanism of the formation of dinuclear platinum(II) mu-hydroxo complexes from cisplatin hydrolysis products, their interconversion, decomposition, and reactions with biomolecules has been explored using a combined DFT/CDM approach. All activation barriers for the formation of [cis-{Pt(NH(3))(2)(X)}-(mu-OH)-cis-{Pt(NH(3))(2)(Y)}](n)()(+) (X, Y = Cl, OH(2), OH) via nucleophilic attack of a hydroxo complex on an aqua complex are lower than the activation barriers for cisplatin hydrolysis. Considering therapeutic Pt(II) concentrations in tumors, however, only the reaction between two molecules of cis-[Pt(NH(3))(2)(OH(2))(OH)](+) (E) yielding [cis-{Pt(NH(3))(2)(OH(2))}-(mu-OH)-cis-{Pt(NH(3))(2)(OH)}](2+) (5) remains kinetically superior to cisplatin hydrolysis. 5 is strongly stabilized by intramolecular hydrogen bonding between the terminal aqua and hydroxo ligands, resulting in an unusually high pK(a) of 5 and a low pK(a) of its conjugate acid. Unimolecular cyclization of 5 yields the dimers [cis-{Pt(NH(3))(2)}(mu-OH)](2)(2+) (7a with antiperiplanar OH groups and 7b with synperiplanar OH groups). The electronic structure of several diplatinum(II) complexes has been analyzed to clarify whether there are metal-metal interactions. The overall reactivity to guanine (Gua) and dimethyl sulfide (Met, representing the thioether functional group of methionine) increases in the order 5 < 7a approximately 7b < mononuclear complexes, whereas the kinetic selectivity to Gua relative to Met increases in the order 7a approximately 5 < 7b approximately monocationic mononuclear complexes < dicationic mononuclear complex. The results of this work (i) help assess whether dinuclear metabolites play a role in cisplatin chemotherapy, (ii) elucidate the toxicity and pharmacological inactivity of [cis-{Pt(NH(3))(2)}(mu-OH)](2)(2+), and (iii) suggest future investigations of dinuclear anticancer complexes that contain one mu-hydroxo ligand.  相似文献   

13.
In this article, we describe a series of new complex salts in which electron-donating cis-{Ru(II)(NH3)(4)}(2+) centers are connected to two electron-accepting N-methyl/aryl-pyridinium groups. These V-shaped complexes contain either monodentate 4,4'-bipyridyl-derived ligands or related chelates based on 2,2':4,4":4',4'-quaterpyridyl and have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 nm and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi metal-to-ligand charge-transfer bands. These experiments reveal that these dipolar pseudo-C(2v)chromophores exhibit two substantial components of the beta tensor, beta(zzz)and beta(zyy), with the difference between them being most marked for the nonchelated systems. Time-dependent density-functional theory and finite field calculations serve to further illuminate the electronic structures and associated linear and NLO properties of the new chromophoric salts.  相似文献   

14.
A series of RuN(6) dinuclear Ru-Hbpp complexes (Hbpp is the dinucleating tetraaza ligand 3,5-bis(pyridyl)pyrazole) of general formula {[Ru(II)(R(2)-trpy)(MeCN)](2)(μ-R(1)-bpp)}(3+), 10(3+)-14(3+), (R(1) = H, Me, or NO(2). and R(2) = H, Me, MeO; see Scheme 1) has been prepared from their Cl(-) or AcO(-) bridged precursors. The complexes have been characterized by UV-vis, NMR, CV, and some by X-ray. Complexes 10(3+)-14(3+), Ru(2)(II,II), were oxidized by 1 equiv in solution, leading to the mixed valence Ru(2)(II,III) complexes 10(4+)-14(4+) containing one unpaired electron and were characterized by EPR and UV-vis-near-IR, which showed metal-centered spin and the presence of low-energy IVCT bands. The H(ab) parameter indicates a relatively strong electronic coupling between the two ruthenium centers (class II). Further two electron oxidation in solution of the 10(3+)-14(3+) led to the formation of EPR silent Ru(2)(III,III) complexes 10(5+)-14(5+), that were further characterized by UV-vis-NIR. TD-DFT calculations are employed to assign the nature of the UV-vis transitions for the complexes in the various oxidation states, which are of metal to ligand charge transfer (MLCT) type for Ru(2)(II,II) and ligand to metal charge transfer (LMCT) type for Ru(2)(III,II) and Ru(2)(III,III).  相似文献   

15.
New dinuclear asymmetric ruthenium complexes of the type [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+/5+) (bpy = 2,2'-bipyridine; 5-CNphen = 5-cyano-1,10-phenanthroline) have been synthesized and characterized by spectroscopic, electrochemical, and photophysical techniques. The structure of the cation [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+) has been determined by X-ray diffraction. The mononuclear precursor [Ru(bpy)(2)(5-CNphen)](2+) has also been prepared and studied; while its properties as a photosensitizer are similar to those of [Ru(bpy)(3)](2+), its luminescence at room temperature is quenched by a factor of 5 in the mixed-valent species [(bpy)(2)Ru(II)(5-CNphen)Ru(III)(NH(3))(5)](5+), pointing to the occurrence of intramolecular electron-transfer processes that follow light excitation. From spectral data for the metal-to-metal charge-transfer transition Ru(II) --> Ru(III) in this latter complex, a slight electronic interaction (H(AB) = 190 cm(-1)) is disclosed between both metallic centers through the bridging 5-CNphen.  相似文献   

16.
The reaction of [Sb(2)W(22)O(74)(OH)(2)](12-) and [Fe(4)(H(2)O)(10)(β-TeW(9)O(33))(2)](4-) with (NH(4))(2)[RuCl(6)] in aqueous solution resulted in the novel ruthenium(IV)-containing polyanions [{Ru(IV)(4)O(6)(H(2)O)(9)}(2)Sb(2)W(20)O(68)(OH)(2)](4-) and [{Ru(IV)(4)O(6)(H(2)O)(9)}(2){Fe(H(2)O)(2)}(2){β-TeW(9)O(33)}(2)H](-), exhibiting two cationic, adamantane-like, tetraruthenium(IV) units {Ru(4)O(6)(H(2)O)(9)}(4+) bound to the respective polyanion in an external, highly accessible fashion.  相似文献   

17.
The absorption, emission, and infrared spectra, metal (Ru) and ligand (PP) half-wave potentials, and ab initio calculations on the ligands (PP) are compared for several [L(n)()Ru(PP)](2+) and [[L(n)Ru]dpp[RuL'(n)]](4+) complexes, where L(n) and L'(n) = (bpy)(2) or (NH(3))(4) and PP = 2,2'-bipyridine (bpy), 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), or 2,3-bis(2pyridyl)benzoquinoxaline (dpb). The energy of the metal-to-ligand charge-transfer (MLCT) absorption maximum (hnu(max)) varies in nearly direct proportion to the difference between Ru(III)/Ru(II) and (PP)/(PP)(-) half-wave potentials, DeltaE(1/2), for the monometallic complexes but not for the bimetallic complexes. The MLCT spectra of [(NH(3))(4)Ru(dpp)](2+) exhibit three prominent visible-near-UV absorptions, compared to two for [(NH(3))(4)Ru(bpy)](2+), and are not easily reconciled with the MLCT spectra of [[(NH(3))(4)Ru]dpp[RuL(n)]](4+). The ab initio calculations indicate that the two lowest energy pi orbitals are not much different in energy in the PP ligands (they correlate with the degenerate pi orbitals of benzene) and that both contribute to the observed MLCT transitions. The LUMO energies calculated for the monometallic complexes correlate strongly with the observed hnu(max) (corrected for variations in metal contribution). The LUMO computed for dpp correlates with LUMO + 1 of pyrazine. This inversion of the order of the two lowest energy pi orbitals is unique to dpp in this series of ligands. Configurational mixing of the ground and MLCT excited states is treated as a small perturbation of the overall energies of the metal complexes, resulting in a contribution epsilon(s) to the ground-state energy. The fraction of charge delocalized, alpha(DA)(2), is expected to attenuate the reorganizational energy, chi(reorg), by a factor of approximately (1 - 4alpha(DA)(2) + alpha(DA)(4)), relative to the limit where there is no charge delocalization. This appears to be a substantial effect for these complexes (alpha(DA)(2) congruent with 0.1 for Ru(II)/bpy), and it leads to smaller reorganizational energies for emission than for absorption. Reorganizational energies are inferred from the bandwidths found in Gaussian analyses of the emission and/or absorption spectra. Exchange energies are estimated from the Stokes shifts combined with perturbation--theory-based relationship between the reorganizational energies for absorption and emission values. The results indicate that epsilon(s) is dominated by terms that contribute to electron delocalization between metal and PP ligand. This inference is supported by the large shifts in the N-H stretching frequency of coordinated NH(3) as the number of PP ligands is increased. The measured properties of the bpy and dpp ligands seem to be very similar, but electron delocalization appears to be slightly larger (10-40%) and the exchange energy contributions appear to be comparable (e.g., approximately 1.7 x 10(3) cm(-1) in [Ru(bpy)(2)dpp](2+) compared to approximately 1.3 x 10(3) cm(-1) in the bpy analogue).  相似文献   

18.
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3?:?3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3?:?3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and M?ssbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.  相似文献   

19.
Novel polynuclear compounds, the trinuclear precursor complex cis-{[(phen)(2)Ru(PHEHAT)](2)Ru(CH(3)CN)(2)}(6+) 4 and the trinuclear TPAC (tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]acridine) complex {[(phen)(2)Ru(PHEHAT)](2)Ru(TPAC)}(6+) 5 have been prepared. Their electrochemistry and photophysics indicate that the (3)MLCT (metal to ligand charge transfer) emissions involve the external {Ru(PHEHAT)} moieties for both complexes and there is no spectro-electrochemical correlation. The trinuclear dendron with the TPAC ligand represents a key compound for future constructions of much larger species thanks to the TPAC that could bridge another polynuclear precursor. For decreasing the length of preparation of these compounds, microwave assisted syntheses have been tested and used not only for the targeted complexes but also for the precursors ((phen)(2)RuCl(2), {(phen)(2)Ru(phendione)}(2+), {(phen)(2)Ru(PHEHAT)}(2+) (PHEHAT = 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene), (DMSO)(4)RuCl(2)), and for the bridging TPAC ligand itself. The microwave method allows a drastic decrease of the preparation times, especially in the case of the TPAC, from 8 days to 60 min.  相似文献   

20.
The aquation profiles of two novel dinuclear polyamine-linked, platinum-based antitumour complexes [{trans-PtCl((15)NH(3))(2)}(2){μ-((15)NH(2)(CH(2))(6)(15)NH(2)(CH(2))(6)(15)NH(2))}](3+) (BBR3007, 1,1/t,t-6,6, 1) and [{trans-PtCl((15)NH(3))(2)}(2){μ-((15)NH(2)(CH(2))(6)(15)NH(2)(CH(2))(2)(15)NH(2)(CH(2))(6)(15)NH(2))}](4+) (BBR3610, 1,1/t,t-6,2,6, 1') have been probed using 2D [(1)H, (15)N] HSQC NMR spectroscopy. Reported herein are the rate constants for the hydrolysis of 1 and 1', as well as the acid dissociation constants of the coordinated aqua ligands in their aquated derivatives. The aquation and anation rate constants for the single step aquation model in 15 mM NaClO(4) (pH 5.4) at 298 K are, for 1, k(1) = 7.2 ± 0.1 ×10(-5) s(-1), k(-1) = 0.096 ± 0.002 M(-1) s(-1) and, for 1', k(1) = 4.0 ± 0.2 × 10(-5) s(-1), k(-1) = 1.4 ± 0.1 M(-1) s(-1). The effect of the linker backbone (Pt(tetra(m)mine vs. polyamine) was evaluated by comparison with previous data for the trinuclear complex [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (1,0,1/t,t,t or BBR3464). The pK(1) for 1,0,1/t,t,t (3.44) is closest to that of 1 (3.12), while the pronounced difference for 1' (4.54), means that 1' is the least aquated of the three complexes at equilibrium. pK(a) values of 5.92 were calculated for the aquated forms of both 1 and 1', which are 0.3 pK units higher than for either 1,0,1/t,t,t, or the dinuclear 1,1/t,t. The higher pK(a) values for both polyamine-linked compounds may be attributed to the formation of macrochelates between the central NH(2) groups and the {PtN(3)O} coordination sphere of the aquated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号