首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

2.
Six new nonlinear optical (NLO) chromophores with pyrazinyl-pyridinium electron acceptors have been synthesized by complexing a known pro-ligand with electron donating {Ru(II)(NH(3))(5)}(2+) or trans-{Ru(II)(NH(3))(4)(py)}(2+) (py = pyridine) centers. These cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. The visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions gain intensity on increasing the number of Ru(II) centers from one to two, but remain at constant energy. One or two Ru(III/II) redox processes are observed which are reversible, quasi-reversible, or irreversible, while all of the ligand-based reductions are irreversible. Molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and depolarization studies show that the NLO responses of the symmetric species are strongly two-dimensional (2D) in character, with dominant "off-diagonal" β(zyy) components. Stark (electroabsorption) spectroscopic measurements on the MLCT bands also allow the indirect determination of estimated static first hyperpolarizabilities β(0). Both the HRS and the Stark-derived β(0) values increase on moving from mono- to bimetallic complexes, and substantial enhancements in NLO response are achieved when compared with one-dimensional (1D) and 2D monometallic Ru(II) ammine complexes reported previously.  相似文献   

3.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

4.
Overlayer thin films of vinylbipyridine (vbpy)-containing Ru and Zn complexes have been formed on top of ruthenium dye complexes adsorbed to TiO(2) by reductive electropolymerization. The goal was to create an efficient, water-stable photoelectrode or electrodes. An adsorbed-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(3)](PF(6))(2) surface composite displays excellent stability toward dissolution in water, but the added overlayer film greatly decreases incident photon-to-current conversion efficiencies (IPCE) in propylene carbonate with I(3)(-)/I(-) as the carrier couple. An ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Zn(vbpy)(3)](PF(6))(2) composite displays no loss in IPCE compared to ads-[Ru(vbpy)(2)(dcb)](PF(6))(2) but is susceptible to film breakdown in the presence of water by solvolysis and loss of the cross-linking Zn(2+) ions. Success was attained with an ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(2)(dppe)](PF(6))(2) composite. In this case the electropolymerized layer is transparent in the visible. The composite electrode is stable in water, the IPCE in propylene carbonate with I(3)(-)/I(-) is comparable to the adsorbed complex, and a significant IPCE is observed in water with the quinone/hydroquinone carrier couple. The assembly [(bpy)(2)(CN)Ru(CN)Ru(vbpy)(2)(NC)Ru(CN)(bpy)(2)](PF(6))(2) ([Ru(CN)Ru(NC)Ru](PF(6))(2)) adsorbs spontaneously on TiO(2), and electropolymerization of thin layers of the assembly to give ads-[Ru(CN)Ru(NC)Ru](PF(6))(2)/poly-[Ru(CN)Ru(NC)Ru](PF(6))(2) enhances IPCE and has no deleterious effect on the IPCE/Ru.  相似文献   

5.
The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.  相似文献   

6.
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)2-3,5}-2,2':6',2' '-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)2, and [Ru(TPBr)2](PF6)2, synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)2 (7) and [Ru(TPPdCl)2](PF6)2 (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)2](PF6)2 (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono- and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (1)MLCT (Ru --> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)2]2+ indicates stabilization of the luminescent 3MLCT state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)2, are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)2} chromophoric unit and the (non)metalated NCN-pincer moiety.  相似文献   

7.
4,5-Bis(terpyridyl)-2,7-di-tert-butyl-9,9-dimethylxanthene (btpyxa) was prepared to serve as a new bridging ligand via Suzuki coupling of terpyridin-4'-yl triflate and 2,7-di-tert-butyl-9,9-dimethylxanthene-4,5-diboronic acid. The reaction of btpyxa with either 1 equiv or an excess of PtCl(2)(cod) (cod = 1,5-cyclooctadiene) followed by anion exchange afforded mono- and dinuclear platinum complexes [(PtCl)(btpyxa)](PF(6)) ([1](PF(6))) and [(PtCl)(2)(btpyxa)](PF(6))(2) ([2](PF(6))(2)), respectively. The X-ray crystallography of [1](PF(6)).CHCl(3) revealed that the two terpyridine units in the ligand are nearly parallel to each other. The heterodinuclear complex [(PtCl)[Ru((t)Bu(2)SQ)(dmso)](btpyxa)](PF(6))(2) ([4](PF(6))(2)) (dmso = dimethyl sulfoxide; (t)Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) and the monoruthenium complex [Ru((t)Bu(2)SQ)(dmso)(trpy)](PF(6)) ([5](PF(6))) (trpy = 2,2':6',2' '-terpyridine) were also synthesized. The CV of [2](2+) suggests possible electronic interaction between the two Pt(trpy) groups, whereas such an electronic interaction was not suggested by the CV of [4](2+) between Pt(trpy) and Ru((t)Bu(2)SQ) frameworks.  相似文献   

8.
We report the direct laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of four inorganic coordination complexes: monometallic [Ir(dpp)(2)Cl(2)](PF(6)), homonuclear trimetallic ([(bpy)(2)Ru(dpp)](2)RuCl(2))- (PF(6))(4), and heteronuclear [(tpy)Ru(tpp)Ru(tpp)RhCl(3)](PF(6))(4) and ([(bpy)(2)Ru(dpp)](2)IrCl(2))(PF(6))(5) (dpp = 2,3-bis-(2'-pyridyl)pyrazine, bpy = 2,2'-bipyridine, tpy = 2,2',6',2"-terpyradine, tpp = 2,3,5,6,-tetrakis-(2'-pyridyl)pyrazine). Spectral intensities and fragmentation patterns are compared and evaluated for instrument parameters, matrix selection, and matrix-to-analyte ratio. Direct LDI and MALDI mass spectra of the monometallic complex showed the same ion peaks and differed only in the relative peak intensities. Direct LDI of the trimetallic complexes produced only low-mass fragments containing one metal at most. MALDI spectra of the trimetallic complexes exhibited little fragmentation in the high-mass region (>1500 Da) and less fragmentation in the low-mass region compared to direct LDI. Significant fragments of the molecules were detected and identified, including ligand fragments, intermediate-mass fragments such as [Ru(tpy)](+), and molecular ions with varying degrees of PF(6)(-) loss ([M - n(PF(6))](+), where n = 1-3). A correlation exists between the solution-phase electrochemistry and the observed [M - n(PF(6))](+) series of peaks for the trimetallic complexes. Proper matrix selection for MALDI analysis was vital, as was an appropriate matrix-to-analyte ratio. The results demonstrate the applicability of MALDI-TOFMS for the structural characterization of labile inorganic coordination complexes.  相似文献   

9.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

10.
Bark T  Thummel RP 《Inorganic chemistry》2005,44(24):8733-8739
A synthetic protocol involving the Friedl?nder reaction of 8-amino-7-quinolinecarbaldehyde followed by potassium dichromate oxidation was applied to 2,3,4-pentanetrione-3-oxime and 1-(pyrid-2'-yl)propane-1,2-dione-1-oxime to provide the ligands di-(phenathrolin-2-yl)-methanone (1) and phenanthrolin-2-yl-pyrid-2-yl-methanone (8), respectively. Ligand 1 complexed as a planar tetradentate with Pd(II) to form [Pd(1)](BF4)2 and with Ru(II) and two 4-substituted pyridines (4-R-py) to form [Ru(1)(4-R-py)2](PF6)2 where R = CF3, CH3, and Me2N. With [Ru(bpy)2Cl2], the dinuclear complex [(bpy)2Ru(1)Ru(bpy)2](PF6)4 was formed (bpy = 2,2'-bipyridine). Ligand 8 afforded the homoleptic Ru(II) complex [Ru(8)2](PF6)2, as well as the heteroleptic complex [Ru(8)(tpy)](PF6)2 (tpy = 2,2';6,2'-terpyridine). The ligands and complexes were characterized by their NMR and IR spectra, as well as an X-ray structure determination of [Ru(1)(4-CH3-py)2](PF6)2. Electrochemical analysis indicated metal-based oxidation and ligand-based reduction that was consistent with results from electronic absorption spectra. The complexes [Ru(1)(4-R-py)2](PF6)2 were sensitive to the 4-substituent on the axial pyridine: electron donor groups facilitated the oxidation while electron-withdrawing groups impeded it.  相似文献   

11.
Cyclometalated ruthenium complexes having C(∧)N and N(∧)C type coordinating ligands with NAD(+)/NADH function have been synthesized and characterized by spectroscopic methods. The variation of the coordinating position of σ-donating carbon atom leads to a drastic change in their properties. Both the complex Ru(phbn)(phen)(2)]PF(6) ([1]PF(6)) and [Ru(pad)(phen)(2)]PF(6) ([2]PF(6)) reduced to Ru(phbnHH)(phen)(2)]PF(6) ([1HH]PF(6)) and [Ru(padHH)(phen)(2)]PF(6) ([2HH]PF(6)) by chemical and electrochemical methods. Complex [1]PF(6) photochemically reduced to [1HH]PF(6) in the presence of the sacrificial agent triethylamine (TEA) upon irradiation of visible light (λ ≥ 420 nm), whereas photochemical reduction of [2]PF(6) was not successful. Both experimental results and theoretical calculations reveal that upon protonation the energy level of the π* orbital of either of the ligands phbn or pad is drastically stabilized compared to the nonprotonated forms. In the protonated complex [Ru(padH)(phen)(2)](PF(6))(2) {[2H](PF(6))(2)}, the Ru-C bond exists in a tautomeric equilibrium with Ru═C coordination and behaves as a remote N-heterocyclic carbene (rNHC) compex; on the contrary, this behavior could not be observed in protonated complex [Ru(phbnH)(phen)(2)](PF(6))(2) {[1H](PF(6))(2)}.  相似文献   

12.
Two classes of synthetically useful bimetallic complexes of the form [(tpy)M(tpp)RuCl(3)](PF(6)) and [(tpy)M(tpp)Ru(tpp)](PF(6))(4) have been prepared and their spectroscopic and electrochemical properties investigated (tpy = 2,2':6',2"-terpyridine, tpp = 2,3,5,6-tetrakis(2-pyridyl)pyrazine, and M = Ru(II) or Os(II)). Synthetic methods have been developed for the stepwise construction of tpp-bridged systems using a building block approach. In all four complexes, the tpp that serves as the bridging ligand is the site of localization of the lowest unoccupied molecular orbital (LUMO). The nature of the HOMO (highest occupied molecular orbital) varies depending upon the components present. In the systems of the type [(tpy)M(tpp)RuCl(3)](PF(6)), the ruthenium metal coordinated to tpp and three chlorides is the easiest to oxidize and is the site of localization of the HOMO. In contrast, for the [(tpy)M(tpp)Ru(tpp)](PF(6))(4) systems, the HOMO is based on the metal, M, that is varied, either Ru or Os. This gives rise to systems which possess a lowest lying excited state that is always a metal-to-ligand charge transfer state involving tpp but can be tuned to involve Os or Ru metal centers in a variety of coordination environments. The synthetic variation of the components within this framework has allowed for understanding the spectroscopic and electrochemical properties. Bimetallic systems incorporating this tpp ligand have long-lived excited states at room temperature (lifetimes of ca. 100 ns). The bimetallic system [(tpy)Ru(tpp)Ru(tpp)](PF(6))(4) has a longer excited state lifetime than the monometallic system from which it was constructed, [(tpy)Ru(tpp)](PF(6))(2). Details of the spectroscopic and electrochemical studies are reported herein.  相似文献   

13.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

14.
In mononitrosyl complexes of transition metals two long-lived metastable states corresponding to linkage isomers of the nitrosyl ligand can be induced by irradiation with appropriate wavelengths. Upon irradiation, the N-bound nitrosyl ligand (ground state, GS) turns into two different conformations: isonitrosyl O bound for the metastable state 1 (MS1) and a side-on nitrosyl conformation for the metastable state 2 (MS2). Structural and spectroscopic investigations on [RuCl(NO)py(4)](PF(6))(2)·1/2H(2)O (py = pyridine) reveal a nearly 100% conversion from GS to MS1. In order to identify the factors which lead to this outstanding photochromic response we study in this work the influence of counteranions, trans ligands to the NO and equatorial ligands on the conversion efficiency: [RuX(NO)py(4)]Y(2)·nH(2)O (X = Cl and Y = PF(6)(-) (1), BF(4)(-) (2), Br(-)(3), Cl(-) (4); X = Br and Y = PF(6)(-) (5), BF(4)(-) (6), Br(-)(7)) and [RuCl(NO)bpy(2)](PF(6))(2) (8), [RuCl(2)(NO)tpy](PF(6)) (9), and [Ru(H(2)O)(NO)bpy(2)](PF(6))(3) (10) (bpy = 2,2'-bipyridine; tpy = 2,2':6',2"-terpyridine). Structural and infrared spectroscopic investigations show that the shorter the distance between the counterion and the NO ligand the higher the population of the photoinduced metastable linkage isomers. DFT calculations have been performed to confirm the influence of the counterions. Additionally, we found that the lower the donating character of the ligand trans to NO the higher the photoconversion yield.  相似文献   

15.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

16.
Mixed-metal supramolecular complexes that couple ruthenium or osmium based light absorbers to a central rhodium(III) core have been designed which photocleave DNA upon irradiation with visible light. The complexes [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5), [[(bpy)(2)Os(dpp)](2)RhCl(2)](PF(6))(5), and [[(tpy)RuCl(dpp)](2)RhCl(2)](PF(6))(3), where bpy = 2,2'-bipyridine, tpy = 2,2':6',2' '-terpyridine, and dpp = 2,3-bis(2-pyridyl)pyrazine, all exhibit intense metal to ligand charge transfer (MLCT) based transitions in the visible but possess lower lying metal to metal charge transfer (MMCT) excited states. These supramolecular complexes with low lying MMCT states photocleave DNA when excited into their intense MLCT transitions. Structurally similar complexes without this low lying MMCT state do not exhibit DNA photocleavage, establishing the role of this MMCT state in the DNA photocleavage event. Design considerations necessary to produce functional DNA photocleavage agents are presented herein.  相似文献   

17.
The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH(2))](2+) [L = 2,2'-bipyridine (bpy), 1; 4,4'-dimethoxy-2,2'-bipyridine (bpy-OMe), 2; 4,4'-dicarboxy-2,2'-bipyridine (bpy-CO(2)H), 3; tpy = 2,2';6',2'-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [Ru(V)(tpy)(L)O](3+) ([Ru(V)=O](3+)) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k(1) and k(2)) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH(4))(2)[Ce(NO(3))(6)] (CAN), to the [Ru(IV)(tpy)(L)O](2+) ([Ru(IV)=O](2+)) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [Ru(IV)=O](2+) form of 2 generates [Ru(V)=O](3+) (k(3) = 3.7 M(-1) s(-1)), which, in turn, undergoes slow O-O bond formation with the substrate (k(O-O) = 3 × 10(-5) s(-1)). The minimal (or negligible) thermodynamic driving force for the reaction between the [Ru(IV)=O](2+) form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [Ru(IV)-OO](2+) level under catalytic conditions for each complex. Complex 2, however, passes through the [Ru(V)-OO](3+) level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [Ru(V)=O](3+) and [Ru(III)-OH](2+) redox levels can be generated by disproportionation of the [Ru(IV)=O](2+) form of the catalyst (k(d) = 1.2 M(-1) s(-1)). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O](z) unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.  相似文献   

18.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

19.
The molecular and electronic structures of the four members, [Cr(tpy)(2)](PF(6))(n) (n = 3-0; complexes 1-4; tpy = 2,2':6',2″-terpyridine), of the electron transfer series [Cr(tpy)(2)](n+) have been determined experimentally by single-crystal X-ray crystallography, by their electro- and magnetochemistry, and by the following spectroscopies: electronic absorption, X-ray absorption (XAS), and electron paramagnetic resonance (EPR). The monoanion of this series, [Cr(tpy)(2)](1-), has been prepared in situ by reduction with KC(8) and its EPR spectrum recorded. The structures of 2, 3, 4, 5, and 6, where the latter two compounds are the Mo and W analogues of neutral 4, have been determined at 100(2) K. The optimized geometries of 1-6 have been obtained from density functional theoretical (DFT) calculations using the B3LYP functional. The XAS and low-energy region of the electronic spectra have also been calculated using time-dependent (TD)-DFT. A consistent picture of the electronic structures of these octahedral complexes has been established. All one-electron transfer processes on going from 1 to 4 are ligand-based: 1 is [Cr(III)(tpy(0))(2)](PF(6))(3) (S = (3)/(2)), 2 is [Cr(III)(tpy(?))(tpy(0))](PF(6))(2) (S = 1), 3 is [Cr(III)(tpy(?))(2)](PF(6)) (S = (1)/(2)), and 4 is [Cr(III)(tpy(??))(tpy(?))](0) (S = 0), where (tpy(0)) is the neutral parent ligand, (tpy(?))(1-) represents its one-electron-reduced π radical monoanion, (tpy(2-))(2-) or (tpy(??))(2-) is the corresponding singlet or triplet dianion, and (tpy(3-))(3-) (S = (1)/(2)) is the trianion. The electronic structure of 2 cannot be described as [Cr(II)(tpy(0))(2)](PF(6))(2) (a low-spin Cr(II) (d(4); S = 1) complex). The geometrical features (C-C and C-N bond lengths) of these coordinated ligands have been elucidated computationally in the following hypothetical species: [Zn(II)Cl(2)(tpy(0))](0) (S = 0) (A), [Zn(II)(tpy(?))Cl(NH(3))](0) (S = (1)/(2)) (B), [Zn(II)(tpy(2-))(NH(3))(2)](0) (S = 0 or 1) (C), and [Al(III)(tpy(3-))(NH(3))(3)](0) (S = (1)/(2) and (3)/(2)) (D). The remarkable electronic structure of the monoanion has been calculated and experimentally verified by EPR spectroscopy to be [Cr(III)(tpy(2-))(tpy(??))](1-) (S = (1)/(2)), a complex in which the two dianionic tpy ligands differ only in the spin state. It has been clearly established that coordinated tpy ligands are redox-active and can exist in at least four oxidation levels.  相似文献   

20.
Sun SS  Lees AJ 《Inorganic chemistry》2001,40(13):3154-3160
A series of novel heterometallic square complexes with the general molecular formulas [fac-Br(CO)(3)Re[mu-(pyterpy)(2)M]](4)(PF(6))(8) and [(dppf)Pd[mu-(pyterpy)(2)Ru]](4)(PF(6))(8)(OTf(8) (4), where M = Fe (1), Ru (2), or Os (3), pyterpy is 4'-(4' "-pyridyl)-2,2':6',2' '-terpyridine, dppf = 1,1'-bis(diphenylphosphino)ferrocene and OTf is trifluoromethanesulfonate, were prepared by self-assembly between BrRe(CO)(5) or (dppf)Pd(H(2)O)(2)(OTf)(2) and (pyterpy)(2)M(PF(6))(2). The obtained NMR spectra, IR spectra, electrospray ionization mass spectra, and elemental analyses are all consistent with the proposed square structures incorporating terpyridyl metal complexes as bridging ligands. Multiple redox processes were observed in all square complexes. All four complexes display strong visible absorptions in the region 400-600 nm, which are assigned as metal (Fe, Ru, or Os)-to-ligand (pyterpy) charge transfer (MLCT) bands. Square 3 exhibits an additional weak band at 676 nm, which is assigned to an Os-based (3)MLCT band. For each complex, the bands centered between 279 and 377 nm are assigned as pyterpy-based pi-pi bands and the Re-based MLCT band. Square 3 is luminescent in room-temperature solution, while squares 1, 2, and 4 do not have any detectable luminescence under identical experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号