首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat capacities of benzoylferrocene (BOF), C5H5FeC5H4COC6H5, and benzylferrocene (BF), C5H5FeC5H4CH2C6H5, have been measured by the low-temperature adiabatic calorimetry in the temperature range from 6 K to 372 K. The purity benzylferrocene and thermodynamic properties – the triple point temperature and the enthalpy of fusion have been obtained. The ideal gas thermodynamic functions (changes of the entropy, enthalpy, and Gibbs free energy) of BOF and BF were derived at T = 298.15 K using the heat capacities and previously determined data on the saturation vapours pressures and the enthalpies of sublimation. The ideal gas enthalpy of formation and absolute entropy of BOF at T = 298.15 K have been obtained from quantum chemical calculations, where as the thermodynamic properties of BF have been estimated by empirical method of group equations. A good agreement between experimental and theoretical values provides an additional check of the reliability of the experimental data.  相似文献   

2.
The heat capacities of isobutyl tert-butyl ether in crystalline, liquid, supercooled liquid, and glassy states were measured by vacuum adiabatic calorimetry over the temperature range from (7.68 to 353.42) K. The purity of the substance, the glass-transition temperature, the triple point and fusion temperatures, and the enthalpy and entropy of fusion were determined. Based on the experimental data, the thermodynamic functions (absolute entropy and changes of the enthalpy and Gibbs free energy) were calculated for the solid and liquid states over the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacity and other thermodynamic functions in wide temperature range were calculated by statistical thermodynamics method using molecular parameters determined from density-functional theory. Empirical correction for coupling of rotating groups was used to calculate the internal rotational contributions to thermodynamic functions. This correction was found by fitting to the calorimetric entropy values.  相似文献   

3.
The heat capacity of LiCoO2 (O3-phase), constituent material in cathodes for lithium-ion batteries, was measured using two differential scanning calorimeters over the temperature range from (160 to 953) K (continuous method). As an alternative, the discontinuous method was employed over the temperature range from (493 to 693) K using a third calorimeter. Based on the results obtained, the enthalpy increment of LiCoO2 was derived from T = 298.15 K up to 974.15 K. Very good agreement was obtained between the derived enthalpy increment and our independent measurements of enthalpy increment using transposed temperature drop calorimetry at 974.15 K. In addition, values of the enthalpy of formation of LiCoO2 from the constituent oxides and elements were assessed based on measurements of enthalpy of dissolution using high temperature oxide melt drop solution calorimetry. The high temperature values obtained by these measurements are key input data in safety analysis and optimisation of the battery management systems which accounts for possible thermal runaway events.  相似文献   

4.
This work reports new experimental thermodynamic results on fluorene. Vapor pressures of both crystalline and liquid phases were measured using a pressure gauge (capacitance diaphragm manometer) and Knudsen effusion methods over a wide temperature range (292.20 to 412.16) K yielding accurate determination of enthalpy and entropy of sublimation and of vaporization. The enthalpy of sublimation was also determined using Calvet microcalorimetry. The enthalpy of fusion was derived from vapor pressure results and from d.s.c. experiments. Static bomb calorimetry was used to determine the enthalpy of combustion of fluorene from which the standard enthalpy of formation in the crystalline phase was calculated. The enthalpy of formation in the gaseous phase was calculated combining the result derived for the crystalline phase with the enthalpy of sublimation.  相似文献   

5.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two fluorene derivatives: 2-aminofluorene and 2-nitrofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. A Knudsen effusion method was used to perform the vapour pressure study of the referred compounds, yielding an accurate determination of the standard molar enthalpies and entropies of sublimation. The enthalpies of sublimation were also determined using Calvet microcalorimetry and the enthalpy and temperature of fusion were derived from DSC experiments. Derived results of standard enthalpy and Gibbs energy of formation in both gaseous and crystalline phases were compared with the ones reported in literature for fluorene. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared to the experimental values.  相似文献   

6.
The heat capacity of Ir(C5H7O2)3 has been measured by the adiabatic method within the temperature range (5 to 305) K. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. A connection has been found between the entropy and the volume of the elementary crystalline cell for β-acetylacetonates of some metals. The reasons for this interdependence are discussed. The values of entropies at T = 298.15 K have been calculated for all the metal acetylacetonates on which there are structural data.  相似文献   

7.
Recommended vapor pressures of solid benzene (CAS Registry Number: 71-43-2) which are consistent with thermodynamically related crystalline and ideal-gas heat capacities as well as with properties of the liquid phase at the triple point temperature (vapor pressure, enthalpy of vaporization) were established. The recommended data were developed by a multi-property simultaneous correlation of vapor pressures and related thermal data. Vapor pressures measured in this work using the static method in the temperature range from 233 K to 260 K, covering pressure range from 99 Pa to 1230 Pa, were included in the simultaneous correlation. The enthalpy of sublimation was established with uncertainty significantly lower than the previously recommended values.  相似文献   

8.
The heat capacity of a crystal solvate of fullerene chloride, C60Cl30·0.09 Cl2, was measured by vacuum adiabatic calorimetry in the temperature range from (25 to 371.5) K. The thermodynamic functions (changes of the enthalpy, entropy, and Gibbs free energy) of C60Cl30·0.09 Cl2 have been derived. On the basis of obtained data and the enthalpy of formation of C60Cl30 determined before, the entropy and Gibbs free energy of formation of the fullerene chloride were calculated at T = 298.15 K.  相似文献   

9.
The main thermodynamic functions (changes of the entropy, enthalpy, and Gibbs free energy) and functions of formation at T = 298.15 K of 4-tert-butyl-diphenyl oxide in condensed and ideal gas states were computed on the basis of experimental results obtained. The heat capacities of 4-tert-butyl-diphenyl oxide was measured by vacuum adiabatic calorimetry over the temperature range (8 to 371) K. The temperature, the enthalpy and the entropy of fusion were determined. The energy of combustion of the sample was determined by static-bomb combustion calorimetry. The saturation vapor pressures of the substance were measured by dynamic transpiration method over the temperature and pressure intervals (298 to 325) K and (0.05 to 1.2) Pa. The enthalpy of sublimation at T = 298.15 K was derived. The contribution of O-(2Cb) group (where Cb is the carbon atom in a benzene ring) into the absolute entropies of diphenyl oxide derivatives was assessed.  相似文献   

10.
A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K.From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−HO) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.  相似文献   

11.
Complexation of U(VI) by succinate has been studied at various temperatures in the range of (298 to 338) K by potentiometry and isothermal titration calorimetry at constant ionic strength (1.0 M). The potentiometric titrations revealed the formation of 1:1 uranyl succinate complex in the pH range of 1.5 to 4.5. The stability constant of uranyl succinate complex was found to increase with temperature. Similar trend was observed in the case of enthalpy of complex formation. However, the increase in entropy with temperature over-compensated the increase in enthalpy, thereby favouring the complexation reaction at higher temperatures. The linear increase of enthalpy of complexation with temperature indicates constancy of the change in heat capacity during complexation. The temperature dependence of stability constant data was well explained with the help of Born equation for electrostatic interaction between the metal ion and the ligand. The data have been compared with those for uranyl complexes with malonate and oxalate to study the effect of ligand size and hydrophobicity on the temperature dependence of thermodynamic quantities.  相似文献   

12.
The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 105 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free energies of formation in crystalline and gaseous phases were undertaken. The standard molar enthalpies of formation of the title compounds were also estimated from two different computational approaches using density functional theory-based B3LYP and the multilevel G3 methodologies.  相似文献   

13.
The constant-volume energy of combustion of crystalline anhydrous caffeine (C8H10N4O2) in α (lower temperature steady) crystal form was measured by a bomb combustion calorimeter, the standard molar enthalpy of combustion of caffeine at T = 298.15 K was determined to be −(4255.08 ± 4.30) kJ · mol−1, and the standard molar enthalpy of formation was derived as −(322.15 ± 4.80) kJ · mol−1. The heat capacity of caffeine in the same crystal form was measured in the temperature range from (80 to 387) K by an adiabatic calorimeter. No phase transition or thermal anomaly was observed in the above temperature range. The thermal behavior of the compound was further examined by thermogravimetry (TG), differential thermal analysis (DTA) over the range from (300 to 700) K and by differential scanning calorimetry (DSC) over the range from (300 to 540) K, respectively. From the above thermal analysis a (solid–solid) and a (solid–liquid) phase transition of the compound were found at T = (413.39 and 509.00) K, respectively; and the corresponding molar enthalpies of these transitions were determined to be (3.43 ± 0.02) kJ · mol−1for the (solid–solid) transition, and (19.86 ± 0.03) kJ · mol−1 for the (solid–liquid) transition, respectively.  相似文献   

14.
The solubility of 2,3,4,5-tetrabromothiophene in (ethanol + tetrahydrofuran) binary solvent mixtures was measured within the temperature range from (278.15 to 322.15) K. The solubility increases with the rise of temperature, while it decreases with increasing ethanol content at constant temperature. The experimental data were fitted using the two variants of the combined nearly ideal binary solvent/Redlich–Kister (CNIBS/R–K) equation and the Jouyban–Acree equation, respectively. All the three equations were proven to give good representations of the experimental values. Computational results showed that the variant two of CNIBS/R–K equation was superior to the other two equations. The thermodynamic properties of the solution process, including the Gibbs free energy, enthalpy, and entropy, were calculated by the van’t Hoff analysis. The values of both the enthalpy change and the standard molar Gibbs free energy change of solution were positive, which indicated that the process was endothermic.  相似文献   

15.
The standard (p°=0.1MPa) molar enthalpy of formation of 4-methyldibenzothiophene, in the gaseous phase, at T = 298.15 K, was derived from the combination of the values of the standard molar enthalpy of formation, in the crystalline phase, at T = 298.15 K, and the standard molar enthalpy of sublimation, at the same temperature. The standard molar enthalpy of formation in the crystalline phase, determined from the standard massic energy of combustion, in oxygen, is (70.9 ± 4.8) kJ · mol?1 and was measured by rotating-bomb combustion calorimetry. From Calvet microcalorimetry measurements, the standard molar enthalpy of sublimation obtained is (90.3 ± 0.7) kJ · mol?1.  相似文献   

16.
The heat capacities and the enthalpies of phase transitions of cyclohexyl esters (formate, acetate, butyrate, and valerate) in the condensed state between T =  (5 and 320) K were measured in a vacuum adiabatic calorimeter. It was found that all liquid compounds were supercooled by cooling them fromT =  300 K at a rate of (0.02 to 0.03)K · s  1and formed glasses. Crystalline phases were obtained for all esters and the residual entropies of glasses at T   0 were evaluated. The glass transition temperatures and the heat capacity jumps accompanying the glass transitions, as well as the thermodynamic parameters of fusion of crystalline phases, were determined for all the esters. The molar thermodynamic functions of the investigated compounds in the crystalline, liquid, supercooled liquid, and glassy states were obtained. The regular changes of some thermodynamic properties in the series of cyclohexyl esters are discussed.  相似文献   

17.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the three crystalline isomers of methylbenzamide. From the temperature dependence of the vapour pressures, the standard molar enthalpies of sublimation and the enthalpies of the intermolecular hydrogen bonds N−H⋯O were calculated. The temperature and molar enthalpy of fusion of the studied isomers were measured using differential scanning calorimetry. The values of the standard (p° = 0.1 MPa) molar enthalpy of formation in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental values, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were calculated and compared with the values estimated by employing computational calculations that were conducted using different quantum chemical methods: G3(MP2), G3, and CBS-QB3. Good agreement between experimental and theoretical results is verified. The aromaticity of the compounds has been evaluated through nucleus independent chemical shifts (NICS) calculations.  相似文献   

18.
Thermophysical behavior of the binary system [water + 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid (IL)] was thoroughly characterized through systematic measurements of (vapor + liquid) equilibria (water activity aw), mixing enthalpy, density, viscosity, and refractive index. The measurements were performed in the entire composition range and/or specifically in the highly dilute IL region, at T = 298.15 K or as a function of temperature in the range from (288.15 to 318.15) K. Effective experimental methods minimizing IL sample consumption, using flow arrangements, instrument couplings and high degree of automation were preferably employed. In particular, the aw determination based on the chilled-mirror dew point technique and implemented by an AquaLab 4TE instrument was identified as a generally superior approach to study VLE of (water + IL) systems. Excess thermodynamic properties (Gibbs free energy, enthalpy, heat capacity, and volume) and property deviations from the linear mixing rule (viscosity, refractive index) were evaluated, Padé approximants being used to correlate adequately their complex composition dependences. The extensive aw data were processed by a two-step procedure fitting first the temperature dependence at each isopleth and subsequently the composition dependence at each isotherm. Good estimates could be thus obtained for derivative thermal properties (enthalpy, heat capacity). Alternatively, the water activity and excess enthalpy data were correlated simultaneously by a NRTL-type model, providing their compact, thermodynamically consistent and adequate representation. Despite small absolute values of excess Gibbs free energy (GE), the system is revealed to be highly nonideal, the small GE resulting from close compensation of its large enthalpy and entropy contributions. Large endothermic effects and an enhanced increase of entropy upon mixing found for this system indicate relative weakness of interactions between unlike molecules and a massive structure breakage in the solution. Positive values of excess volume and negative values of viscosity and refractive index deviations found in the major part of the composition range corroborate this general energetic and structural pattern, although the situation appears to be more complicated in the highly dilute IL region, where these properties congruently exhibit a sign inversion.  相似文献   

19.
The standard (p = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T = 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, –(263.9 ± 4.6) kJ · mol−1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines.  相似文献   

20.
《Fluid Phase Equilibria》2006,244(2):137-152
The simultaneous solubility of sulfur dioxide and ammonia in aqueous solutions of (ammonium sulfate or sodium sulfate) was measured by a synthetic method in the temperature range from 313.6 to 373.2 K and at pressures up to 2.5 MPa. Furthermore, the enthalpy change upon diluting aqueous solutions of sulfur dioxide, ammonia and (ammonium sulfate or sodium sulfate) in aqueous solutions of the same salt was measured in a batch calorimeter at about 313 and 352 K. The experimental results are used for comparison with predictions from a thermodynamic model for the vapor–liquid equilibrium and the enthalpy of dilution of those chemical reacting systems. In that model, activity coefficients are calculated from Pitzer's molality-scale-based Gibbs excess energy model, where all interaction parameters are either adopted from previous investigations on the properties of the binary and ternary sub-systems (if available) or they are neglected (if they are not available).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号