首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat capacities of benzoylferrocene (BOF), C5H5FeC5H4COC6H5, and benzylferrocene (BF), C5H5FeC5H4CH2C6H5, have been measured by the low-temperature adiabatic calorimetry in the temperature range from 6 K to 372 K. The purity benzylferrocene and thermodynamic properties – the triple point temperature and the enthalpy of fusion have been obtained. The ideal gas thermodynamic functions (changes of the entropy, enthalpy, and Gibbs free energy) of BOF and BF were derived at T = 298.15 K using the heat capacities and previously determined data on the saturation vapours pressures and the enthalpies of sublimation. The ideal gas enthalpy of formation and absolute entropy of BOF at T = 298.15 K have been obtained from quantum chemical calculations, where as the thermodynamic properties of BF have been estimated by empirical method of group equations. A good agreement between experimental and theoretical values provides an additional check of the reliability of the experimental data.  相似文献   

2.
The molar heat capacity of Zn2GeO4, a material which exhibits negative thermal expansion below ambient temperatures, has been measured in the temperature range 0.5⩽(T/K)⩽400. At T=298.15 K, the standard molar heat capacity is (131.86 ± 0.26) J · K−1 · mol−1. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropy at T=298.15 K is (145.12 ± 0.29) J · K−1 · mol−1. The existence of low-energy modes is supported by the excess heat capacity in Zn2GeO4 compared to the sums of the constituent binary oxides.  相似文献   

3.
The heat capacity of a crystal solvate of fullerene chloride, C60Cl30·0.09 Cl2, was measured by vacuum adiabatic calorimetry in the temperature range from (25 to 371.5) K. The thermodynamic functions (changes of the enthalpy, entropy, and Gibbs free energy) of C60Cl30·0.09 Cl2 have been derived. On the basis of obtained data and the enthalpy of formation of C60Cl30 determined before, the entropy and Gibbs free energy of formation of the fullerene chloride were calculated at T = 298.15 K.  相似文献   

4.
We have evaluated the accuracy of the heat capacity option of a Quantum Design physical property measurement system (PPMS) by measuring the heat capacity of various types of conducting and insulating samples over the temperature range from (2 to 300) K. In particular, the accuracy of measurements on a copper pellet was determined to be ±2% for 2 K < T < 20 K and ±0.6% for 20 K < T < 300 K, however similar measurements on a powdered sample of benzoic acid had errors as high as 20%. A new method for heat capacity measurements of powdered samples using a PPMS system has been developed that allows us to obtain heat capacity measurements for both insulating and conducting powdered samples with an accuracy of ±1% from (20 to 300) K and ±2% to ±5% for T < 20 K. Since the heat capacity of substances (and corresponding entropy contribution) is small at low temperatures for lattice-only contributions, the accuracy of ±2% to ±5% below 20 K is considered acceptable. As a test of the new method, the heat capacity of powdered bulk hematite has been measured in the temperature range from (2 to 300) K with the PPMS, and its standard entropy at T = 298.15 K was calculated to be (87.33 and 87.27) J · K?1 · mol?1, which deviates ?0.08% and ?0.15% from the accepted reference value, respectively. We recommend that this new method become the standard for accurate heat capacity measurements on insulating powdered samples using a PPMS system and the corresponding thermodynamic calculations.  相似文献   

5.
In this communication we report calorimetric data for the standard state enthalpies of solution of α-Ba(OH)2 in high dilution (10?3 m) hydrochloric acid obtained from integral heats of solution measurements from temperatures of (333.55 to 516.64) K and extrapolated to 298.15 K. From previous studies in this laboratory on BaCl2(aq) and auxiliary literature data, the standard state thermodynamic functions for completely ionized HCl(aq) can be determined. These new data are in good agreement and confirm our previously reported results on HCl(aq) from ionic additivity. The enthalpy of formation of solid α-Ba(OH)2 at temperature of 298.15 K of ?939.38 kJ · mol?1 can also be calculated from the present results. Values of the standard state heat capacity change for the ionization of water up to temperature of 523.15 K and at psat were calculated from present results using the literature data for NaOH(aq) and NaCl(aq) obtained from high dilution calorimetric measurements.  相似文献   

6.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

7.
The low temperature (2 to 300) K heat capacity of monoclinic hafnia (HfO2) was measured using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). The thermodynamic functions in this temperature range were derived by curve fitting. The standard entropy and enthalpy of hafnia at T = 298.15 K was calculated to be 56.15 ± 0.57 J · mol?1 · K?1 and 9.34 ± 0.09 kJ · mol?1, respectively. The results are in fairly good agreement with old data, which only covered temperatures from (50 to 298) K. Hafnia has a higher heat capacity than zirconia at all temperatures from (2 to 300) K.  相似文献   

8.
The heat capacity of calcium monouranate CaUO4 and strontium monouranate SrUO4 have been measured over the temperature range (2 to 300) K. The results are significantly different from earlier measurements, confirming the conclusions from our previous study on BaUO4. The standard entropy at T = 298.15 K of orthorhombic α-SrUO4 is consistent with the values for the isostructural BaUO4 as well as the alkali uranates Na2UO4 and Cs2UO4. The standard entropy of the rhombohedral CaUO4 is appreciably different, which is attributed to the different structures of the uranium sublattices.  相似文献   

9.
A new Mn (III) Schiff-base coordination compound, [Mn(L)(NCS)]2 (H2L = N,N′-bis(5-chlorosalicylidene)-1,2-diaminoethane), has been synthesized and characterized structurally and magnetically. The target compound is a phenoxo-bridged dimeric compound with the isothiocyanate coordinating in a usual bent mode. A magnetic susceptibility study reveals that the target compound exhibits antiferromagnetic intra-dimer coupling between Mn (III) ions. The low temperature heat capacity of the compound over the temperature range (2 to 300) K has been measured using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). The thermodynamic functions in the experimental temperature range have been determined by curve fitting. The standard entropy and enthalpy of the as-prepared compound at T = 298.15 K have been calculated to be (924.52 ± 10.17) J · K−1 · mol−1 and (133.47 ± 1.47) kJ · mol−1, respectively.  相似文献   

10.
The densities of tetra-n-butylammonium bromide in 1-propanol, 1-butanol, acetone at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K and sound velocities at 298.15 K have been measured. From these data apparent molar volumes VΦ at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K and the apparent molar isenotropic compressibility KS,Φ, at T = 298.15 K of tetrabutylammonium bromide in nonaqueous solvents have been determined. The apparent molar volumes and the apparent molar isenotropic compressibilities were fitted to the Redlich, Rosenfeld, and Mayer equation as well as to the Pitzer equation yielding infinite dilution data, which were compared to the similar quantities for tetrabutylphosphonium bromide. Moreover, the acoustical parameters such as intermolecular free length (Lf), relative association (RA), Rao’s molar sound function (Rm), and salvation number (Sn) were calculated using the experimental data of density and sound velocity at T = 298.15 K for ammonium and phosphonium bromides. The obtained data suggest the penetration of the acetone molecule within the intraionic free space of the tetrabutyl-ammonium and phosphonium cations.  相似文献   

11.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

12.
The main thermodynamic functions (changes of the entropy, enthalpy, and Gibbs free energy) and functions of formation at T = 298.15 K of 4-tert-butyl-diphenyl oxide in condensed and ideal gas states were computed on the basis of experimental results obtained. The heat capacities of 4-tert-butyl-diphenyl oxide was measured by vacuum adiabatic calorimetry over the temperature range (8 to 371) K. The temperature, the enthalpy and the entropy of fusion were determined. The energy of combustion of the sample was determined by static-bomb combustion calorimetry. The saturation vapor pressures of the substance were measured by dynamic transpiration method over the temperature and pressure intervals (298 to 325) K and (0.05 to 1.2) Pa. The enthalpy of sublimation at T = 298.15 K was derived. The contribution of O-(2Cb) group (where Cb is the carbon atom in a benzene ring) into the absolute entropies of diphenyl oxide derivatives was assessed.  相似文献   

13.
The heat capacities of isobutyl tert-butyl ether in crystalline, liquid, supercooled liquid, and glassy states were measured by vacuum adiabatic calorimetry over the temperature range from (7.68 to 353.42) K. The purity of the substance, the glass-transition temperature, the triple point and fusion temperatures, and the enthalpy and entropy of fusion were determined. Based on the experimental data, the thermodynamic functions (absolute entropy and changes of the enthalpy and Gibbs free energy) were calculated for the solid and liquid states over the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacity and other thermodynamic functions in wide temperature range were calculated by statistical thermodynamics method using molecular parameters determined from density-functional theory. Empirical correction for coupling of rotating groups was used to calculate the internal rotational contributions to thermodynamic functions. This correction was found by fitting to the calorimetric entropy values.  相似文献   

14.
We report measurements of the speed of sound in mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. The measurements were made using a dual path pulse-echo apparatus operating at a frequency of 5 MHz. We have also measured the isobaric specific heat capacity of each mixture as a function of temperature at ambient pressure, by means of a Setaram DSC III microcalorimeter. The experimental results have been combined with literature data for the density of the same mixtures as a functions of temperature at ambient pressure to obtain the density, isobaric specific heat capacity, and other thermodynamic properties at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. Detailed comparisons with the literature data are presented.  相似文献   

15.
The low-temperature heat capacity of synthetic huttonite ThSiO4 has been measured from T = (2 to 300) K. The sample was synthesised successfully from SiO2 and ThO2 by solid-state reaction at T = 1873 K at atmospheric pressure. From the calorimetric results, the value for the standard entropy Sm° (ThSiO4, huttonite, 298.15 K) = (104.3 ± 2.0) J · K?1 · mol?1 has been obtained. This value indicates that the entropy of reaction from SiO2 and ThO2 is negative, giving a positive entropy term (?T · ΔrS) of the Gibbs free energy of reaction. The implications of this finding are discussed extensively.  相似文献   

16.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

17.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

18.
The densities of tetraphenylphosphonium bromide, sodium tetraphenylborate, lithium perchlorate, sodium perchlorate and lithium bromide in γ-butyrolactone at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and speed of sound at 298.15 K have been measured. From these data apparent molar volumes VΦ at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and the apparent molar isentropic compressibility KS,Φ, at T = 298.15 K of the salts have been determined. The apparent molar volumes and the apparent molar isentropic compressibilities were fitted to the Redlich, Rosenfeld and Mayer equation as well as to the Pitzer and Masson equations yielding infinite dilution data. The obtained limiting values have been used to estimate the ionic data of the standard partial molar volume and the standard partial isentropic compressibility in γ-butyrolactone solutions.  相似文献   

19.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

20.
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T)  S(0)}/R for stoichiometric compositions of alkali disilicate (M2O · 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号