首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of 1-phenylpyrrole and 1-(4-methylphenyl)pyrrole, at T = 298.15 K, were derived from the standard molar energies of combustion in oxygen, measured by static-bomb combustion calorimetry. For these compounds, the standard molar enthalpies of sublimation, at T = 298.15 K, were determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard (p° = 0.1 MPa) molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived. From the experimental values, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated.Additionally, the enthalpies of formation of both compounds were estimated using the composite G3(MP2)//B3LYP approach together with adequate gas-phase working reactions. There is a very good agreement between computational and experimental results.  相似文献   

2.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

3.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the three crystalline isomers of methylbenzamide. From the temperature dependence of the vapour pressures, the standard molar enthalpies of sublimation and the enthalpies of the intermolecular hydrogen bonds N−H⋯O were calculated. The temperature and molar enthalpy of fusion of the studied isomers were measured using differential scanning calorimetry. The values of the standard (p° = 0.1 MPa) molar enthalpy of formation in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental values, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were calculated and compared with the values estimated by employing computational calculations that were conducted using different quantum chemical methods: G3(MP2), G3, and CBS-QB3. Good agreement between experimental and theoretical results is verified. The aromaticity of the compounds has been evaluated through nucleus independent chemical shifts (NICS) calculations.  相似文献   

4.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two bromine fluorene derivatives: 2-bromofluorene and 2,7-dibromofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapour pressures of the crystalline phase of the two compounds were measured using the Knudsen effusion method and a static method that has also been used to measure the liquid vapour pressures of 2-bromofluorene. From these results the standard molar enthalpies, entropies and Gibbs energies of sublimation of the two compounds studied and of vapourisation of 2-bromofluorene were derived. The enthalpies and temperatures of fusion were determined from DSC experiments. Derived results of standard enthalpies and Gibbs energies of formation, in both gaseous and crystalline phases, were compared with the ones reported in the literature for fluorene.The experimental values of the gas-phase enthalpies of formation of each compound were compared with estimates based on density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with the 6-311++G(d,p) basis set.  相似文献   

5.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, for 5-methyluracil, 6-methyluracil, and 5-nitrouracil were derived from the values of the standard massic energies of combustion measured by static bomb combustion calorimetry. The results obtained together with literature values of the enthalpies of sublimation yielded the standard molar enthalpies of formation, in gaseous phase, at T = 298.15 K. These values are discussed in the terms of structural enthalpic increments.  相似文献   

6.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

7.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following crystalline compounds: 1,2-diphenylethane (bibenzyl), between T =  289.16 K and T =  303.20 K, and of 3-phenylpropiolic acid between T =  329.15 K and T =  343.15 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation at the mean temperature of the experimental range were derived by the Clausius–Clapeyron equation. From these results the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were calculated:  相似文献   

8.
The standard (po =  0.1 MPa) molar enthalpies of formation for 2,3-, 2,4-, 2,5-, 3,4- and 3,5- trans -dimethoxycinnamic acids, in the gaseous phase, were derived from the standard molar enthalpies of combustion in oxygen, of the crystalline compounds, determined by static bomb combustion calorimetry at T =  298.15 K and from the literature values for the respective enthalpies of sublimation.  相似文献   

9.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two fluorene derivatives: 2-aminofluorene and 2-nitrofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. A Knudsen effusion method was used to perform the vapour pressure study of the referred compounds, yielding an accurate determination of the standard molar enthalpies and entropies of sublimation. The enthalpies of sublimation were also determined using Calvet microcalorimetry and the enthalpy and temperature of fusion were derived from DSC experiments. Derived results of standard enthalpy and Gibbs energy of formation in both gaseous and crystalline phases were compared with the ones reported in literature for fluorene. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared to the experimental values.  相似文献   

10.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 3-acetylbenzonitrile and benzoylacetonitrile, in the crystalline phase, were derived from the respective standard massic energies of combustion measured by static bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From the above experimentally determined enthalpic parameters, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, are found to be: (52.4 ± 2.1) kJ · mol−1 and (74.8 ± 2.5) kJ · mol−1 for 3-acetylbenzonitrile and benzoylacetonitrile, respectively.Molecular structures were computed using highly accurate ab initio techniques. Standard molar enthalpies of formation of the experimentally studied compounds were derived using an appropriate set of working reactions. Very good agreement between the calculated and the experimental values was obtained, so the calculations were extended to the estimates of the standard molar enthalpies of formation of 2- and 4-acetylbenzonitriles whose study was not performed experimentally.Our results were further interpreted and rationalized in terms of the enthalpic stability and compared to other relevant disubstituted benzenes.  相似文献   

11.
A thermophysical and thermochemical study has been carried out for crystalline imidazolidin-2-one and N,N′-trimethyleneurea [tetrahydropyrimidin-2(1H)-one]. The thermophysical study was made by differential scanning calorimetry, d.s.c., in the temperature intervals between T = 268 K and their respective melting temperatures. Several solid–solid transitions have been detected in imidazolidin-2-one. The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for crystalline imidazolidin-2-one and N,N′-trimethyleneurea [tetrahydropyrimidin-2(1H)-one], were determined using static-bomb combustion calorimetry. The standard molar enthalpies of sublimation, at T = 298.15 K, for the two compounds were derived from the variation of their vapour pressures, measured by the Knudsen effusion method, with the temperature. These two thermochemical parameters yielded the standard molar enthalpies of formation of the two cyclic urea compounds studied in the gaseous phase at T = 298.15 K. These values are discussed in terms of molecular structural contributions and interpreted on the bases of the “benzo-condensed effect” and of the ring strain of imidazolidin-2-one.  相似文献   

12.
The standard (po =  0.1 MPa) molar enthalpies of combustion in oxygen, at T =  298.15 K, for crystalline 3,5-dimethylpyrazole (Me2Pyr), 3,5-dimethyl-4-nitrosopyrazole (Me2PyrNO), 1,3,5-trimethyl-4-nitrosopyrazole (Me3PyrNO), and 3,5-dimethyl-1-phenyl-4-nitrosopyrazole (Me2PhPyrNO) were measured by static-bomb calorimetry. These values were used to derive the standard molar enthalpies of formation of the crystalline compounds. The standard molar enthalpies of sublimation for these four compounds were measured by microcalorimetry.The experimental results obtained allow us to derive the values of the standard molar enthalpies of formation, in the gaseous state, for the monomeric compounds involved in this work. These last values are discussed comparatively with results previously obtained for some aromatic nitroso derivatives.  相似文献   

13.
The standard (p   =  0.1MPa) molar enthalpies of combustion in oxygen, at T =  298.15 K, for crystalline picolinamide (2-NH2COPy), nicotinamide (3-NH2COPy), isonicotinamide (4-NH2COPy), nicotinamide N -oxide (3- NH2COPyNO), and isonicotinamide N - oxide (4-NH2COPyNO) were measured by static-bomb calorimetry. These values were used to derive the standard molar enthalpies of formation of the crystalline compounds. The standard molar enthalpies of sublimation, at T =  298.15 K, for the three pyridinecarboxamide isomers were measured by microcalorimetry and the standard molar enthalpies of sublimation for the two pyridinecarboxamide N -oxide compounds were measured by a mass-loss effusion technique. From the enthalpies of formation of the gaseous compounds, the molar dissociation enthalpies Dmoof the (N + – O  ) covalent bonds were derived. Comparison has been made with Dmo(N–O) values in pyridine N -oxide derivatives.  相似文献   

14.
The standard (po = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for the liquids 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine were determined by static bomb combustion calorimetry. The standard molar enthalpies of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. The standard (po = 0.1 MPa) molar enthalpies of formation of the three compounds studied, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization, yielding ((−42.7 ± 1.9), (−18.2 ± 1.8) and (−233.5 ± 1.8)) kJ · mol−1, for 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine, respectively.  相似文献   

15.
The present work reports an experimental and computational study of the energetics of 1,2-benzisothiazol-3(2H)-one and 1,4-benzothiazin-3(2H, 4H)-one. The standard (p° = 0.1 MPa) massic energy of combustion, at T = 298.15 K, of each compound was measured by rotating bomb combustion calorimetry, in oxygen that allowed the calculation of the respective standard molar enthalpy of formation, in the condensed phase, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by high-temperature Calvet microcalorimetry. From the combination of data obtained by both techniques we have calculated the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K. In addition, computational calculations were carried using the density functional theory with the B3LYP functional and the 6-31G1 basis set and some correlations between structure and energetics were obtained for the keto and enol forms of both compounds. Using the G3(MP2)//B3LYP composite method and various appropriate reactions, the standard molar enthalpies of formation of 1,2-benzisothiazol-3(2H)-one and 1,4-benzothiazin-3(2H, 4H)-one, at T = 298.15 K, were computationally derived and compared with the experimental data. The aromaticity of 1,2-benzisothiazol-3(2H)-one, 1,4-benzothiazin-3(2H, 4H)-one and that of some related species was evaluated by analysis of nucleus independent chemical shifts (NICS).  相似文献   

16.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following crystalline dicarboxylic acids: succinic acid, between T =  360.11 K and T =  375.14 K; methylsuccinic acid, between T =  343.12 K and T =  360.11 K; 2,2-dimethylsuccinic acid, between T =  350.11 K, and T =  365.11 K; 2-methylglutaric acid, between T =  338.38 K and T =  347.63 K; and 2,2-dimethylglutaric acid between T =  342.18 K and T =  352.66 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard, po =  105Pa, molar enthalpies, entropies and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

17.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following compounds: 3-phenylpropionic acid, between T =  305.17 K and T =  315.17 K; 3-(2-methoxyphenyl)propionic acid, between T =  331.16 K and T =  347.16 K; 3-(4-methoxyphenyl)propionic acid, between T =  341.19 K and T =  357.15 K; 3-(3,4-dimethoxyphenyl)propionic acid, between T =  352.18 K and T =  366.16 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation ΔcrgHmowere derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. On the basis of estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, p   =  105Pa, molar enthalpies, entropies and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

18.
The standard (p = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T = 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, –(263.9 ± 4.6) kJ · mol−1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines.  相似文献   

19.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, of the 2-, 3- and 4-iodobenzonitrile isomers were derived from the combination of the corresponding standard molar enthalpies of formation, in the condensed phase, at T = 298.15 K, and the standard molar enthalpies of sublimation, at the same temperature, calculated respectively from the standard molar energies of combustion in oxygen, measured by rotating-bomb calorimetry, and from the vapour-pressure study of the referred compounds, measured by mass-loss Knudsen effusion technique. The strength of the halogen-halogen and the halogen-cyano intermolecular interactions, in the crystal, are evaluated by the enthalpies and entropies of phase transition of the iodobenzonitrile derived from mass-loss Knudsen technique and differential scanning calorimetry measurements and compared with those reported to fluorobenzonitrile and bromobenzonitrile isomers. The computational calculations complement the experimental work, using different aromaticity criteria (HOMA, NICS, Shannom Aromaticity, PDI and ATI) for the analysis of the electronic behaviour of each iodobenzonitrile isomer.  相似文献   

20.
The standard molar energies of combustion, at T = 298.15 K, of crystalline 1,4-benzodioxan-2-carboxylic acid and 1,4-benzodioxan-2-hydroxymethyl were measured by static bomb calorimetry in an oxygen atmosphere. The standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry. These values were used to derive the standard molar enthalpies of formation of the compounds in the gas phase at T = 298.15 K: 1,4-benzodioxan-2-carboxylic acid ?(547.7 ± 3.0) kJ · mol?1 and 1,4-benzodioxan-2-hydroxymethyl ?(374.2 ± 2.3) kJ · mol?1.In addition, density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets, 6-311G7 and cc-pVTZ, have been performed for the compounds studied. We have also tested two more accurate computational procedures involving multiple levels of electron structure theory in order to get reliable estimates of the thermochemical parameters of the compounds studied. The agreement between experiment and theory gives confidence to estimate the enthalpies of formation of other 2-R derivatives of 1,4-benzodioxan (R = –CH2COOH, –OH, –COCH3, –CHO, –CH3, –CN, and –NO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号