首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
16-O-去甲基去氧乌头碱在肠内细菌中的生物转化研究   总被引:2,自引:0,他引:2  
采用人肠内细菌和乌头碱体外温孵的方法,探讨乌头碱的代谢产物16-O-去甲基去氧乌头碱在人肠内的生物转化。利用离子阱电喷雾串联质谱(ESIMS/MSn)方法直接分析16-O-去甲基去氧乌头碱的代谢产物。乌头类生物碱在ESI正离子模式条件下形成质子化分子[M H] 。16-O-去甲基去氧乌头碱可被人肠内细菌转化,通过脱乙酰基、脱苯甲酰基、脱甲基、脱羟基以及酯化反应产生新型的单酯型、双酯型和脂类生物碱等10余种代谢产物。双酯型生物碱具有较高的毒性,相对应的单酯型和脂类生物碱毒性较低。16-O-去甲基去氧乌头碱被肠内细菌转化为单酯型和脂类生物碱会使其毒性降低。  相似文献   

2.
采用人肠内细菌和乌头碱体外温孵的方法, 探讨去氧乌头碱在人肠内的生物转化. 利用离子阱和傅里叶变换离子回旋共振质谱直接分析去氧乌头碱的转化产物. 乌头类生物碱及其代谢产物在正离子电喷雾质谱条件下形成质子化分子([M+H]+), 通过多级串联质谱进行结构表征. 去氧乌头碱可被人肠内细菌转化, 通过脱酰基、脱甲基脱羟基以及酯化反应产生新型的单酯型、双酯型和脂类生物碱等10余种代谢产物. 双酯型的去氧乌头碱的毒性较高, 当它被肠内细菌转化为单酯型和脂类生物碱时会使其毒性降低.  相似文献   

3.
采用人肠内细菌和乌头碱温孵的方法及电喷雾质谱技术, 探讨了乌头碱在人肠内的生物转化规律. 根据在正离子电喷雾电离条件下乌头类生物碱质子化分子[M+H]+提供的分子量信息, 并结合精确质量测定提供的元素组成及串联质谱提供的结构信息, 可以对乌头碱的转化产物直接进行定性分析. 研究结果表明, 乌头碱在人肠内细菌环境中可通过脱乙酰基、脱甲基、脱羟基以及酯化反应产生新型的单酯型、双酯型和脂类生物.  相似文献   

4.
介绍具有重要药理和生物活性的O-磷酸-L-丝氨酸及衍生物的合成. O-磷酸-L-丝氨酸通过部分水解的三氯氧磷与L-丝氨酸反应制得, 并培养得到了其晶体, 利用X射线衍射方法测定了它的晶体结构; 进而合成了O-磷酸-L-丝氨酸钙盐和O-磷酸-L-丝氨酸单(或双)二异丙胺盐. 产物经核磁共振、红外光谱和质谱进行了结构表征.  相似文献   

5.
于湛  闫存玉  宋凤瑞  刘志强  刘淑莹 《化学学报》2006,64(14):1507-1512
利用电喷雾质谱研究了β-环糊精、七-(2,6-二-O-甲基)-β-环糊精作为手性识别试剂对1,1'-联萘酚对映体的手性识别效应. 实验结果表明, 在气相中, β-环糊精与七-(2,6-二-O-甲基)-β-环糊精都可以与联萘酚形成非共价复合物. 对形成的复合物的串联质谱研究表明, β-环糊精不能识别联萘酚对映体, 而七-(2,6-二-O-甲基)-β-环糊精对联萘酚对映体有较强的手性识别效应. 进一步研究表明七-(2,6-二-O-甲基)-β-环糊精与联萘酚对映体混合比例以及CID能量对于手性识别并无影响.  相似文献   

6.
建立了乌头类双酯型生物碱组分专一的转化为单酯水解型生物碱组分和脂型生物碱组分的方法,其转化率在90%以上,应用电喷雾多级串联质谱方法监测反应进程并对反应产物进行鉴定,同时可以考察反应中生成的副产物.  相似文献   

7.
利用电喷雾串联质谱方法不经柱分离而直接分析复方中药四逆汤中二萜生物碱的组成,乌头碱类二萜生物碱在质谱条件下形成质子化分子,一种生物碱对应一个分子离子峰.检测到了苯甲酰单酯型、双酯型和脂类生物碱等18种二萜生物碱,其中苯甲酰中乌头原碱等单酯型生物碱是四逆汤中的主要生物碱成分.  相似文献   

8.
天然黄酮碳糖苷化合物特有的稳定性和显著的生物活性, 使其化学合成成为当今糖化学领域的研究热点之一. 本工作立体专一性地全合成了天然黄酮碳苷Parkinsonin B. 通过控制物质的量比, 首先高选择性合成了2-羟基-4,6-二甲氧基苯乙酮(3), 并与糖给体O-(2,3,4,6-四-O-苄基-α-D-葡萄糖基)三氯乙酰亚胺酯(7)发生立体专一性糖基化反应得到碳糖苷化合物8, 化合物8经查耳酮路线进而合成黄酮碳苷Parkinsonin B (1). 经IR, MS, 1H NMR及元素分析证实了产物及中间体的结构, 同时讨论了全合成反应的主要影响因素, 并对其1H NMR解析进行了探讨.  相似文献   

9.
任秀华  杜光  周冰峰  宗凯  马宝瑕 《化学学报》2007,65(14):1399-1402
研究了穿心莲中抗血栓的活性成分. 应用AB-8大孔吸附树脂、聚酰胺柱色谱及薄层色谱进行分离, 应用波谱学(1H NMR, 13C NMR, DQFCOSY, TOCSY, HMQC, HMBC, NOESY等)方法进行结构鉴定. 分离得到两个黄酮苷类化合物, 确定了1H NMR, 13C NMR信号的全归属. 化合物1鉴定为5,4'-二羟基-7-甲氧基黄酮-6-O-β-D-葡萄糖苷, 化合物2鉴定为5,4'-二羟基-7-甲氧基黄酮-8-O-β-D-葡萄糖苷, 化合物1为首次从该植物中分得, 首次对两个化合物的碳谱和氢谱进行了全归属.  相似文献   

10.
缪伟  徐卫良  张治柳  马汝建  陈曙辉  李革 《有机化学》2007,27(10):1264-1267
以(S)-N-Boc焦谷氨酸乙酯为原料, 经DIBAL-H还原得到半缩醛, 然后经Wittig反应得到相应的烯烃, 最后氢化制得(S)-N-Boc-α-氨基庚二酸二(单)酯, 总收率为85.1%(二酯)和86.1%(单酯). 另外, 以(S)-N-Boc-哌啶-2-甲酸为原料经酯化和氧化得内酰胺, 然后经还原、Wittig反应、氢化得到(S)-N-Boc-α-氨基辛二酸二(单)酯, 总收率为72.5%(二酯)和72.4%(单酯). 产品用1H NMR, MS表征.  相似文献   

11.
A semi‐quantitative method of mass spectrometry (MS) has been described for the analysis of metabolites of aconitine by rat intestinal bacteria at different pH. At pH 7.0, the rat intestinal bacteria exhibit optimal activity for the metabolism of aconitine. A high‐performance liquid chromatography‐electrospray ionization multiple‐stage mass spectrometry (HPLC/ESI‐MSn) method has been applied to investigate the characteristic product ions of metabolites. Then, the logical fragmentation pathways of metabolites have been proposed. By comparing the retention time (tR) of HPLC and the ESI‐MSn data with the data of standard compounds and reports from literature, ten metabolites have been identified and a distinctive metabolite (15‐deoxyaconitine) has been deduced first time. The experimental results demonstrate that HPLC/ESI‐MSn is a specific and useful method for the identification of metabolites of aconitine. Also, in the present paper, the HPLC‐MS method was introduced to determine the synthetical metabolite prior to the study of the toxicity by the method of Bliss.  相似文献   

12.
李澜  滕国凤  孙淑娟  李宗和 《化学学报》2007,65(15):1459-1463
ab initio方法, 在MP2/6-31G**水平下讨论了α-乙酰氧基-亚硝基吡咯烷(α-Acetoxy-NPYR)在各种条件下的解离反应机理, 并对形成终致癌物B, C, D的代谢机理进行研究. 发现在OH和H2O作用下的解离都遵循羟基进攻羰基机理, OH作用下是一个经四面体中间体阴离子的无位垒过程, H2O作用下有相对高的活化能(165.36 kJ/mol). H3O作用下是先形成阳离子产物的SN1过程, 并没有发现遵循两种综合的解离情形. 同时, 羟基化产物异构化为终致癌物B, C, D是一个相对容易进行的过程.  相似文献   

13.
The Thai medicinal plant Mitragyna speciosa (Kratom in Thai) is misused as a herbal drug of abuse. During studies on the main Kratom alkaloid mitragynine (MG) in rats and humans, several dehydro analogs could be detected in urine of Kratom users, which were not found in rat urine after administration of pure MG. Questions arose as to whether these compounds are formed from MG only by humans or whether they are metabolites formed from the second abundant Kratom alkaloid paynantheine (PAY), the dehydro analog of MG. Therefore, the aim of the presented study was to identify the phase I and II metabolites of PAY in rat urine after administration of the pure alkaloid. This was first isolated from Kratom leaves. Liquid chromatography–linear ion trap mass spectrometry provided detailed structure information of the metabolites in the MSn mode particularly with high resolution. Besides PAY, the following phase I metabolites could be identified: 9-O-demethyl PAY, 16-carboxy PAY, 9-O-demethyl-16-carboxy PAY, 17-O-demethyl PAY, 17-O-demethyl-16,17-dihydro PAY, 9,17-O-bisdemethyl PAY, 9,17-O-bisdemethyl-16,17-dihydro PAY, 17-carboxy-16,17-dihydro PAY, and 9-O-demethyl-17-carboxy-16,17-dihydro PAY. These metabolites indicated that PAY was metabolized via the same pathways as MG. Several metabolites were excreted as glucuronides or sulfates. The metabolism studies in rats showed that PAY and its metabolites corresponded to the MG-related dehydro compounds detected in urine of the Kratom users. In conclusion, PAY and its metabolites may be further markers for a Kratom abuse in addition of MG and its metabolites.  相似文献   

14.
In this report, the in vitro metabolism of Strychnos alkaloids was investigated using liquid chromatography/high‐resolution mass spectrometry for the first time. Strychnine and brucine were selected as model compounds to determine the universal biotransformations of the Strychnos alkaloids in rat liver microsomes. The incubation mixtures were separated by a bidentate‐C18 column, and then analyzed by on‐line ion trap/time‐of‐flight mass spectrometry. With the assistance of mass defect filtering technique, full‐scan accurate mass datasets were processed for the discovery of the related metabolites. The structural elucidations of these metabolites were achieved by comparing the changes in accurate molecular masses, calculating chemical component using Formula Predictor software and defining sites of biotransformation based upon accurate MSn spectral information. As a result, 31 metabolites were identified, of which 26 metabolites were reported for the first time. These biotransformations included hydroxylation, N‐oxidation, epoxidation, methylation, dehydrogenation, de‐methoxylation, O‐demethylation, as well as hydrolysis reactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Flos Chrysanthemi, dried flower of Chrysanthemum morifolium Ramat, has drawn much attention recently owing to its potential beneficial health effects for human. Flos Chrysanthemi products are usually taken orally and metabolized by intestinal microflora. However, there has been no investigation of the comprehensive metabolic profile of the Flos Chrysanthemi extract by intestinal flora owing to its chemical complexity and the limitations of analytical methods. In this paper, a rapid, sensitive and automated analysis method, ultra‐performance liquid chromatography/quadrupole time of flight mass spectrometry including MSE technology and automated data processing Metabolynx? software, was developed and successfully applied for the biotransformation and metabolic profile of flavonoids in the Flos Chrysanthemi extract by intestinal flora from human and rat. A total of 32 metabolites were detected and tentatively identified in human and rat intestinal bacterial samples. These metabolites indicated that hydrolysis, hydroxylation, acetylation, methylation, hydrogenation and deoxygenation were the major conversion pathways of flavonoids in the Flos Chrysanthemi extract in vitro. Furthermore, the effects of the Flos Chrysanthemi extract on the growth of different intestinal bacteria were detected using an Emax precision microplate reader. Certain pathogenic bacteria such as Enterobacter, Enterococcus, Clostridium and Bacteroides were significantly inhibited by Flos Chrysanthemi, while commensal probiotics such as Lactobacillus and Bifidobacterium were moderately promoted. Our observation provided further evidence for the importance of intestinal bacteria in the metabolism and potential activity of the Flos Chrysanthemi extract. The results will also be helpful for the further pharmacokinetic study of Flos Chrysanthemi and to unravel how it works in vivo.  相似文献   

16.
17.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号