首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
基于微波诱导等离子体离子源,结合自制的离子迁移谱仪,探讨了负离子模式下反应离子的组分及形成机理,并首次将其应用于痕量爆炸物的快速检测。研究结果表明,等离子体维持气流速会影响反应离子的组分、强度及仪器的灵敏度;通过对比不同等离子体维持气流速下的空气背景迁移谱图、质谱图和季戊四醇四硝酸酯(PETN)的迁移谱图,优化了等离子体维持气流速(300 mL/min);此时反应离子峰的强度高达4 n A(脉冲宽度100μs),主要成分为NO_3~-。在优化条件下,系统考察了微波诱导等离子体离子迁移谱仪对爆炸物检测的响应线性范围及检出限。本方法对硝化甘油(NG)和PETN的线性范围分别为0.1~10.0 ng和0.1~5.0 ng,对NG、环三亚甲基三硝胺(RDX)、PETN、2,4,6-三硝基甲苯(TNT)、2,4-二硝基甲苯(2,4-DNT)的检出限(S/N=3)分别为8、14、12、14和13 pg,实现了痕量爆炸物的快速检测。  相似文献   

2.
离子迁移管是离子迁移谱仪的核心部分,它用来产生均匀的电场,以使不同迁移率的离子进行分离。本研究以丙酮为例,详细研究了本课题组所研制的真空紫外电离源-离子迁移谱仪中迁移管的电场参数对离子的灵敏度和分辨率的影响,发现电压的增大灵敏度增大,但是分辨率存在一个最佳的电压,这些结果可用于迁移谱的优化设计。  相似文献   

3.
漂移管工作温度对离子迁移率谱的影响   总被引:1,自引:0,他引:1  
贾建  郭会勇  高晓光  何秀丽  李建平 《分析化学》2006,34(12):1783-1786
离子迁移率、反应物离子的种类和产量与漂移管工作温度有很大的关系。本研究在不同温度下进行了离子迁移率实验,结果表明,离子迁移率随温度的升高而增大,而提高工作温度可以减少水分子对产物离子的影响,有利于改善系统检测的分辨率;选择合适漂移管工作温度,能有效地增加反应物离子的产量,从而提高系统检测的灵敏度和选择性。  相似文献   

4.
紫外离子迁移谱在线监测芳香族化合物   总被引:4,自引:1,他引:3  
利用自制紫外离子迁移谱仪,在迁移电场为311V/cm、离子门开门时间0.2ms和室温的条件下,测定了空气中的苯、甲苯、二甲苯以及萘、芴、蒽、1,2,3-三氯苯、5-氯苯酚等芳香族化合物,得到苯的校正迁移率为1.86cm2V-1s-1,且校正迁移率随着分子量的增大而减小。仪器对苯的检出限达到1mg/m3;线性范围达到4个数量级;响应时间小于10s。研究发现,电场强度增大有利于提高仪器的灵敏度,测定时载气流速100mL/min,迁移气流速300mL/min时,效果最佳。  相似文献   

5.
基于微机电系统技术(Micro electro mechanical system,MEMS),研制了微型高场非对称波形离子迁移谱(High-field asymmetric waveform ion mobility spectrometry,FAIMS)传感器芯片。芯片采用感应耦合等离子体(ICP)刻蚀和两次硅-玻璃键合工艺加工,尺寸为18.8mm×12.4mm×1.2mm,其中迁移区尺寸为10mm×5mm×0.2mm。设计了高场非对称方波电源,可输出最大频率2MHz,电压峰-峰值1000V,占空比20%~50%连续可调的方波射频电压。以乙醇为实验样品,分析了方波射频电压幅值对FAIMS传感器芯片性能的影响。实验表明,随着电压幅值的增加,FAIMS分辨率提高,灵敏度下降,补偿电压绝对值增大,且芯片对乙醇的检出限可达8.9mg/m3。  相似文献   

6.
载气流速对高场不对称波形离子迁移谱的影响   总被引:3,自引:1,他引:2  
载气流速是影响高场不对称波形离子迁移谱(FAIMS)的重要参数.以自制的高场不对称波形离子迁移谱仪为实验平台,在射频电场幅值3 kV/cm,频率500 kHz,占空比0.36的条件下,研究了载气流速对苯离子迁移谱谱峰强度和半峰宽的影响.实验结果表明: 载气流速为3.7 L/min时,苯样品的谱峰强度最大,仪器的灵敏度最高.随着载气流速的增加,谱峰半峰宽变宽,仪器的分辨率下降.载气流速为3 .0~3.7 L/min时仪器综合性能最佳.此结果对于控制迁移谱仪载气流速有重要的参考意义.  相似文献   

7.
高场非对称波形离子迁移谱(FAIMS)是一种利用非对称电场对气相分子进行分离检测的高灵敏度快速检测技术,超高的非对称波形电场是其迁移区的核心,非对称射频电场的幅值显著影响FAIMS的检测性能.实验以对二甲苯为样品,分析了非对称射频电场幅值对FAIMS检测性能的影响,实验表明随着射频电场幅值增大,检测灵敏度降低而分辨率增...  相似文献   

8.
根据表面离化过程中样品分子在离化材料表面直接离化的特点,设计了一种样品离化和离子注入一步完成的面-网结构表面离化源.以金属钼为离化材料,三乙胺为测试样品,研究了离化源温度、离子门开门脉冲宽度和高度对离子谱图的影响.结果表明,离子流信号强度随离化温度升高迅速增强但离化源寿命缩短,理想的离化温度约为400℃;增加开门脉冲宽...  相似文献   

9.
谭国斌  黄正旭  高伟  周振 《分析化学》2013,41(10):1614-1619
本实验室研制了国内首台宽离子能量检测范围飞行时间质谱仪。仪器采用紧凑式电子轰击源设计,配合离子透镜系统有效的调制离子流,飞行时间质量分析器采用了离子垂直引入式,双场加速和双场反射以及大尺寸MCP检测装置设计。仪器单离子信号半峰宽约2 ns,仪器分辨率优于1600FWHM,检测实际样品质量范围为1~127 amu(仪器理论质量检测上限优于800 amu),可检测离子能量范围优于2个数量级(3~140 eV)。若该TOF质量分析器与短瞬高压脉冲放电离子源耦合联用,可广泛应用于高能离子束的快速检测,如真空阴极放电对制备薄膜、离子注入材料的表征,导电材料的离子电荷态分布以及离子扩散速度的测定等。  相似文献   

10.
应用高场非对称离子迁移谱(FAIMS)技术, 无需经过萃取、 富集等过程, 可直接进样分析甲基丙烯酸甲酯在水基食品模拟物中的迁移量. 通过考察扫描次数、 样品温度、 取样体积、 载气流速和溶剂掺杂对离子特征信号的影响, 确定甲基丙烯酸甲酯的检出限为10 μg/L, 并建立了FAIMS检测甲基丙烯酸甲酯的离子流强度与浓度关系曲线. 该方法操作便捷、 灵敏度高、 分析速度快, 能满足实际工作的要求.  相似文献   

11.
We present a detailed investigation of the performance of our previously reported nanoelectrospray high‐resolution resistive‐glass atmospheric pressure drift tube ion mobility spectrometer constructed with monolithic resistive‐glass desolvation and drift regions. Using experimental spectral data and theoretical pulse width and diffusion variables, we compare theoretical and experimental resolving powers achievable under a variety of field strengths and ion gate pulse widths. The effects of instrumental and operational parameters on the resolution achievable in chromatographic terms are also discussed. Following characterization of the separation power of the instrument, experimental spectral peak width data is fitted by a least‐squares procedure to a pre‐existing semi‐empirical model developed to study contributions to peak width other than initial pulse width and diffusional broadening. The model suggests possible contributions to the final measured peak width from electric field inhomogeneity and minor contributions from instrumental parameters such as anode size, anode‐to‐anode grid distance and drift gas flow rate. The model also reveals an unexpected ion gate width dependence on the final measured peak width that we attribute to non‐ideal performance of the Bradbury‐Nielsen ion gate and limitations in the design of our pulsing‐electronics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A key component in the design of every drift tube ion mobility spectrometer (IMS) is the ion shutter which controls the injection of ions into the drift tube. Especially, compact drift tube IMS require very short injection pulses to achieve high resolution and therefore require fast ion shutters. Thus, it is important to find an ion shutter principle that can be readily scaled towards these short injection widths without causing major non-idealities in the injection process, such as drift field inhomogeneities, ion loss and ion discrimination by mobility. In this paper, we compare different ion shutter principles, foremost the Bradbury-Nielsen gate and a field switching design. It is shown through theoretical considerations and field simulations that the Bradbury-Nielsen shutter is more universally applicable and typically less complex for long injections widths but field inhomogeneities associated with its operating principle impede the scaling process. Thus, the currently less used field switching shutters will become the superior principle when very short injection widths are required, as this shutter principle allows for single digit microsecond widths.  相似文献   

13.
A nano-electrospray ionisation source has been designed and constructed for a high temperature ion mobility spectrometer. The drift cell was modified by replacement of the 63Ni atmospheric pressure chemical ionisation source with a tube lens/desolvation region and operated using commercial nano-electrospray capillaries. Ions were introduced into the drift region via a Bradbury-Nielson gate (pulse width 50 micros, repetition period 20 ms). A unidirectional flow of nitrogen was used as the drift gas at temperatures in the range 100-150 degrees C to aid desolvation. The performance of the nano-electrospray ion source has been demonstrated for analytes including crown ethers, amino acids and peptides. Reduced mobilities determined by nano-ESI were consistent with those reported using a 63Ni ion source.  相似文献   

14.
The methods minimizing duration of the output pulse of the ion mobility spectrometer at its maximum intensity were proposed in order to increase the instrument resolution. The optimal duration of the enabling pulse matched with the gate characteristics and ensuring the minimum time width of output ion packet with maximum intensity was chosen. The following operation modes of the Bradbury-Nielsen gate were considered: 1) time compression of the transmitted ion packet by pulsed increase of the potentials at the some set of wires; 2) instantaneous switching the potentials at the adjacent wires and 3) combination of the instantaneous switching of the potentials on the adjacent wires followed by the time compression of a transmitted ion packet. It was shown that the proposed gate modes ensure minimization of the output ion packet duration and increasing of the ion mobility spectrometer resolution. The estimated resolution of the ion peaks doubles and may reach 200 under considered conditions, space charge not taken into account.  相似文献   

15.
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer. The ion mobility spectrometer module can also be used as an independently operated device when equipped with a Faraday cup detector. The drift tube of the ion mobility spectrometer module consists of inlet, desolvation, drift, and extraction regions. The desolvation, drift and extraction regions are separated by ion gates. The inlet region has the shape of a stainless steel cup equipped with a small orifice. Ion mobility spectrometer drift gas is introduced through a curtain gas line from an original flange of the mass spectrometer. After passing through the drift tube, the drift gas serves as a curtain gas for the ion-sampling orifice of the ion mobility spectrometer before entering the ion source. Counterflow of the drift gas improves evaporation of the solvent from the electrosprayed sample. Drift gas is pumped away from the ion source through the original exhaust orifice of the ion source. Initial characterization of the ion mobility spectrometer device includes determination of resolving power values for a selected set of test compounds, separation of a simple mixture, and comparison of the sensitivity of the electrospray ionization ion mobility spectrometry/mass spectrometry (ESI-IMS/MS) mode with that of the ESI-MS mode. A resolving power of 80 was measured for 2,6-di-tert-butylpyridine in a 333 V/cm drift field at room temperature and with a 0.2 ms ion gate opening time. The resolving power was shown to be dependent on drift gas flow rate for all studied ion gate opening times. Resolving power improved as the drift gas flow increased, e.g. at a 0.5 ms gate opening time, a resolving power of 31 was obtained with a 0.65 L/min flow rate and 47 with a 1.3 L/min flow rate for tetrabutylammonium iodide. The measured limits of detection with ESI-MS and with ESI-IMS/MS modes were similar, demonstrating that signal losses in the IMS device are minimal when it is operated in a continuous flow mode. Based on these preliminary results, the IMS/MS instrument is anticipated to have potential for fast screening analysis that can be applied, for example, in environmental and drug analysis.  相似文献   

16.
The influence of field strength on the separation of tryptic peptides by drift tube-based ion mobility-mass spectrometry is reported. Operating the ion mobility drift tube at elevated field strengths (expressed in V cm(-1) torr(-1)) reduces separation times and increases ion transmission efficiencies. Several accounts in the literature suggest that performing ion mobility separation at elevated field strength can change the selectivity of ion separation. To evaluate the field strength dependant selectivity of ion mobility separation, we examined a data set of 65 singly charged tryptic peptide ion signals (mass range 500-2500 m/z) at six different field strengths and four different drift gas compositions (He, N2, Ar, and CH4). Our results clearly illustrate that changing the field strength from low field (15 V cm(-1) torr(-1)) to high field (66 V cm(-1) torr(-1)) does not significantly alter the selectivity or peak capacity of IM-MS. The implications of these results are discussed in the context of separation methodologies that rely on the field strength dependence of ion mobility for separation selectivity, e.g., high-field asymmetric ion mobility spectrometry (FAIMS).  相似文献   

17.
A novel ion gate for electrospray-ionization atmospheric-pressure ion-mobility spectrometry (ESI-IMS) has been constructed and evaluated. The ion gate consisted of a chopper wheel with two windows—one for periodic ion passage from the ESI source into the drift region and the other for timing and synchronization purposes. The instrument contained a 45.0 cm long drift tube comprising 78 stainless steel rings (0.12 cm thick, 4.90 cm o.d., 2.55 cm i.d.). The rings were connected together in series with 3.34-MΩ resistors. The interface plate and the back plate were also connected with the first and the last rings, respectively, of the drift tube with 3.34-MΩ resistors. A potential of −20.0 kV was applied to the back plate and the interface plate was grounded. The drift tube was maintained at an electric field strength of ∼400 V cm−1. An aperture grid was attached to the last ring in front of a Faraday plate detector, center-to-center. Several sample solutions were electrosprayed at +5.0 kV with +500 V applied to the ion gate. Baseline separations of selected benzodiazepines, antidepressants, and antibiotics were observed with moderate experimental resolution of ∼70.  相似文献   

18.
In electrospray ionization (ESI)-ion mobility spectrometry, continuously generated ions must be desolvated in a first tube before short ion pulses are introduced into a second (drift) tube. Both tubes are separated by an ion-gate. The resolving power of the resulting drift time spectrum is strongly influenced by the design of the ion gate. In the case of the Bradbury-Nielsen gates typically used, an orthogonal field between oppositely charged, parallel wires blocks ions from entering the drift tube. However, the blocking field also distorts the entering ion cloud. One alternative, which eliminates these effects and therefore enables a potentially higher resolving power, is already known for spectrometers with small ionization volumes, where ions are formed between two electrodes and subsequently transferred into the drift tube by a high voltage pulse. Based on this setup, we introduce an alternative ion gate design for liquid samples, named field switching ion gate (FSIG). The continuous flow of ions generated by ESI is desolvated in the first tube and introduced into the space between two electrodes (repeller and transfer electrodes). A third (blocking) electrode prevents the movement of ions into the drift tube in the closed state. Ions are transferred during the open state by pulsing the voltages of the repeller and blocking electrodes. First results demonstrate an increase of the resolving power by 100% without intensity losses and further changes in the spectrometer setup. The parameters of the FSIG, such as electrode voltages and pulse width, are characterized allowing the optimization of the spectrometer’s resolving power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号