首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
The quenching of the triplets of 1,2-naphthoquinone (NQ) and 1,2-naphthoquinone-4-sulfonic acid sodium salt (NQS) by various electron and H-atom donors was investigated by laser flash photolysis measurement in acetonitrile and benzene. The results showed that the reactivities and configurations of 3NQ* (3NQS*) are governed by solvent polarity. All the quenching rate constants (kq) measured in benzene are larger than those in acetonitrile. The SO3Na substituent at the C-4 position of NQS makes 3NQS* more reactive than 3NQ* in electron/H-atom transfer reactions. Large differences of kq values were discovered in H-atom transfer reactions for alcohols and phenols, which can be explained by different H-abstraction mechanisms. Detection of radical cations of amines/anilines in time-resolved transient absorption spectra confirms an electron transfer mechanism. Triplets are identified as precursors of formed radical anions of NQ and NQS in photoinduced reactions. The dependence of electron transfer rate constants on the free energy changes (DeltaG) was treated by using the Rehm-Weller equation. For the four anilines with different substituents on the para or meta position of amidocyanogen, good correlation between log kq values with Hammett sigma constants testifies the correctness of empirical Hammett equation. Charge density distributions, adiabatic ionization/affinity potentials and redox potentials of NQ (NQS) and some quenchers were studied by quantum chemistry calculation.  相似文献   

2.
利用激光闪光光解方法研究了一系列胺类、酚类、醇类在脱氧乙腈中猝灭噻吨酮(TX)三重态的反应,得到了相应的瞬态吸收光谱和猝灭速率常数(kq).通过对光谱演变特性的分析,推断出三重态噻吨酮与不含有活泼氢的胺发生了电子转移反应,与含有活泼氢的胺发生了电子-质子转移反应.三重态噻吨酮与酚类、醇类反应中观察到噻吨酮加氢自由基的生成,据此推断出三重态噻吨酮与酚类、醇类发生了氢转移反应.胺类的猝灭速率常数随着反应自由能变(ΔG)的增大而减小,说明电子转移影响了噻吨酮三重态的猝灭.酚类的猝灭速率常数先随ΔG增大而减小,后随酚阳离子的酸性增强逐渐增大,可能是猝灭过程中电子转移影响减弱的同时氢转移影响逐渐增强.醇类的猝灭速率常数随着醇的α-C—H键能的增大而减小,说明α-C—H键能是影响噻吨酮三重态猝灭的关键因素.比较以前研究的胺类、酚类、醇类与三重态呫吨酮(XT)、芴酮(FL)反应的结果可知,由于分子结构差异性的影响,相关的猝灭速率常数按照呫吨酮、噻吨酮、芴酮的顺序逐渐减小.  相似文献   

3.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

4.
Interactions of organic peroxides (R'OOR) and hydroperoxides (R'OOH), including H2O2, with excited triplet and singlet state metallophthalocyanines (MPc, M = Zn, Al) have been studied by T-T absorption decay and fluorescence quenching. The ensuing photochemical processes result in decomposition of (hydro)peroxides as assessed by photo-EPR (electron paramagnetic resonance) and spin trapping. In argon-saturated apolar solutions and low MPc concentrations, alkoxyl free radicals (*OR) were identified as the primary products of (hydro)peroxide breakdown. Similarly, photosensitized decomposition of symmetric disulfides results in the formation of sulfur-centered radicals. In air-free aqueous solutions, ROOH photosensitization always gave rise to a mixture of hydroxyl and peroxyl radical (*OOR) adducts in varying molar ratios. At high MPc concentrations, both in polar and in apolar solutions, the most abundant products of ROOH decomposition were identified as *OOR. This indicates a change in the predominant interaction pathway, most likely mediated by MPc exciplexes and involving H-atom abstraction from ROOH by MPc-cation radicals. The prevalence of MPc singlet vs. triplet state interactions was confirmed by the much higher singlet quenching rate constants (log kq up to 9.5; vs. log kT < or = 4.5). In contrast to the triplet quenching, singlet quenching rates were found to depend on the (hydro)peroxide structure, following closely the trend of varying *OR yields for different substrates. Thermodynamic calculations were performed to correlate experimental results with models for electronic energy and charge transfer processes in agreement with the Marcus theory (Rhem and Weller approximation) and Savéant's model for a concerted dissociative electron transfer mechanism.  相似文献   

5.
A number of electron donors, acceptors and diads containing xanthene dyes were sythesized. When the dyes were excited, the rate constants and the efficiencies of the intermolecular and intramolecular photo-induced electron transfer reactions were determined and calculated. It is found that the photo-induced electron transfer reactions occurred between xanthene dyes and many, including very weak donors or acceptors. The rate constants of intermolecular reactions were controlled by diffusion, and influenced by the reactant concentrations. The laser flash experiments showed that for low reactant concentrations, this kind of reactions took place mainly via the triplet excited state of the dyes. If different electric charges exist with dyes and donors/acceptors, there will be static quenching of the dyes' fluorescence. The intramolecular electron transfer reactions are independent of the solution concentrations, and they may directly proceed via the singlet excited state of the dyes effectively.  相似文献   

6.
Anaerobic oxidations of 9,10-dihydroanthracene (DHA), xanthene, and fluorene by [(bpy)(2)(py)Ru(IV)O](2+) in acetonitrile solution give mixtures of products including oxygenated and non-oxygenated compounds. The products include those formed by organic radical dimerization, such as 9,9'-bixanthene, as well as by oxygen-atom transfer (e.g., xanthone). The kinetics of these reactions have been measured. The kinetic isotope effect for oxidation of DHA vs DHA-d(4) gives k(H)/k(D) > or = 35 +/- 1. The data indicate a mechanism of initial hydrogen-atom abstraction forming radicals that dimerize, disproportionate and are trapped by the oxidant. This mechanism also appears to apply to the oxidations of toluene, ethylbenzene, cumene, indene, and cyclohexene. The rate constants for H-atom abstraction from these substrates correlate well with the strength of the C-H bond that is cleaved. Rate constants for abstraction from DHA and toluene also correlate with those for oxygen radicals and other oxidants. The rate constant for H-atom transfer from toluene to [(bpy)(2)(py)Ru(IV)O](2+) appears to be close to that predicted by the Marcus cross relation, using a tentative rate constant for hydrogen atom self-exchange between [(bpy)(2)(py)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(IV)O](2+).  相似文献   

7.
The fluorescence and phosphorescence quenching of acetone by 13 aliphatic amines has been investigated. The bimolecular rate constants lie in the range of 10(8)-10(9) M(-1) s(-1) for singlet-excited acetone and 10(6)-10(8) M(-1) s(-1) for the triplet case. The rate data indicate that a direct hydrogen abstraction process dominates for triplet acetone, while a charge-transfer mechanism, namely, exciplex-induced quenching, becomes important for singlet-excited acetone. Pronounced stereoelectronic effects toward H abstraction, e.g., for 1,4-diazabicyclo[2.2.2]octane (DABCO), and significant steric hindrance effects, e.g., for N,N-diisopropyl-3-pentylamine, are observed. A negative activation energy (E(a) = -0.9 +/- 0.2 kcal mol(-1) for triethylamine and DABCO) and the absence of a significant solvent effect on the fluorescence quenching of acetone are indicative of the involvement of exciplexes. Full electron transfer can be ruled out on the basis of the low reduction potential of acetone, which was found to lie below -3.0 V versus SCE. The participation of H abstraction for triplet acetone is corroborated by the respective quenching rate constants, which resemble the reaction rate constants for cumyloxyl radicals. The latter were measured for all 13 amines and showed also a dependence on the electron donor properties of the amines. It is suggested that the H abstraction proceeds directly and not through an exciplex or ion pair. Further, abstraction from N-H bonds in addition to alpha C-H bonds has been corroborated as a significant pathway for excited acetone. Product studies and quantum yields for photoreduction of singlet- and triplet-excited acetone by triethylamine (8% for S(1) versus 24% for T(1)) are in line with the suggested mechanisms of quenching through an exciplex and photoreduction through direct H abstraction.  相似文献   

8.
The quenching of excited singlet oxonine by EDTA in aqueous solution leads mainly to deactivation of the dye to the ground state and, to a lesser extent, to electron abstraction. The rate constants for these processes have been measured and compared to those for the same reactions involving the oxonine triplet state. The rate constant of electron abstraction is about ten times greater via the singlet state than via the triplet state. However, the rate constant of deactivation to the ground state is 103-104 times greater for the excited singlet state than for the triplet state, so that the efficiency of electron transfer is much smaller for the singlet state.  相似文献   

9.
Both steady-state (SS) and time-resolved (TR) studies show that the fluorescence of the dye Nile red (NR) is quenched by various aromatic amines (ArA). Bimolecular quenching constants (kq) from both SS and TR measurements are observed to match well, indicating that the interaction is dynamic in nature. The quenching interaction in the present systems has been attributed to electron transfer (ET) from ArA to excited NR, based on the variations in the kq values with the oxidation potentials of the amines. The kq values calculated within the framework of Marcus' outer-sphere ET theory at different free-energy changes (deltaG0) of the ET reactions match well with the experimental ones, supporting the ET mechanism in the systems studied. The reorganization energy (lambda) estimated from the correlation of the experimental and the calculated kq values is quite similar to the solvent reorganization energy (lambda(s)), calculated on the basis of the solvent dielectric continuum model along with the assumption that the reactants are the effective spheres. Although a modest error is involved in this lambda(s) calculation, the similarity in lambda and lambda(s) values suggests that the solvent reorganization plays a dominant role in governing the ET dynamics in the present systems.  相似文献   

10.
Kinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.) which was found to follow second-order kinetics. In the self-decomposition of 4-methyl-N-hydroxyphthalimide (4-Me-NHPI), H-atom abstraction competes with self-decomposition in the presence of excess 4-Me-NHPI. The second set of reactions studied is hydrogen atom transfer from NHPI to PINO(.), e.g., PINO(.) + 4-Me-NHPI <=> NHPI + 4-Me-PINO(.). The substantial KIE, k(H)/k(D) = 11 for both forward and reverse reactions, supports the assignment of H-atom transfer rather than stepwise electron-proton transfer. These data were correlated with the Marcus cross relation for hydrogen-atom transfer, and good agreement between the experimental and the calculated rate constants was obtained. The third reaction studied is hydrogen abstraction by PINO(.) from p-xylene and toluene. The reaction becomes regularly slower as the ring substituent on PINO(.) is more electron donating. Analysis by the Hammett equation gave rho = 1.1 and 1.8 for the reactions of PINO(.) with p-xylene and toluene, respectively.  相似文献   

11.
The reactions of C2 (a 3pi(u)) radicals with a series of alcohols have been studied at about 6.5 Torr total pressure and room temperature using the pulsed laser photolysis/laser-induced fluorescence technique. The relative concentration of C2 (a 3pi(u)) radicals, which are generated via the photolysis of C2Cl4 with the focused output from the fourth harmonic of a Nd:YAG laser (266 nm), was monitored by laser-induced fluorescence (LIF) in the (0, 0) band of the C2 (d 3pi(g)<--a 3pi(u)) transition at 516.5 nm. Under pseudo-first-order conditions, we measured the time evolution of C2 (a 3pi(u)) and determined the rate constants for reactions of C2 (a 3pi(u)) with alcohols. The rate constants increase linearly with the number of C atoms in the alcohols. All of them are larger than those for reactions of C2 (a 3pi(u)) with alkanes (C1-C5). Based on the bond dissociation energy and linear free energy correlations, we believe the reactions of C2 (a 3pi(u)) with alcohols proceed via the mechanism of hydrogen abstraction. The experimental results show that the H-atom on the C-H bonds is activated at the presence of the OH substituent group in the alcohol molecule. The theoretical calculations for the reaction of C2 (a 3pi(u)) with methanol also support these hypotheses.  相似文献   

12.
Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N′,N′-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3TMB* after rapid intersystem crossing from 1TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), -acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants have been also obtained by calculating with Stern–Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic kq values for CN and CrN in endergonic region may be the disturbance of exciplexs formation.  相似文献   

13.
Studies on the electron transfer (ET) interaction of 1,4-dihydroxy-9,10-anthraquinone and 6,11-dihydroxy-5,12-naphthacenequinone with aliphatic and aromatic amine (AlA and ArA, respectively) donors have been investigated in acetonitrile solutions. Steady-state (SS) measurements show quenching of the quinone fluorescence by amines, without indicating any change in the shape of the fluorescence spectra. No significant change in the absorption spectra of the quinones is also observed in the presence of the amines. For all the quinone-amine pairs, the bimolecular quenching constants (kq) estimated from SS and time-resolved measurements are found to be similar. Variation in the kq values with the oxidation potentials of the amines indicates the involvement of the ET mechanism for the quenching process. A reasonably good correlation between the kq values and the free energy changes (deltaG0) for the ET reactions following Marcus' outer-sphere ET theory also supports this mechanism. It is seen that for both the quinone-ArA and quinone-AlA systems, the kq values initially increase and then get saturated at some diffusion-controlled limiting values (kqDC) as deltaG0 values gradually become more negative. Interestingly, however, it is seen that the kqDC value for the quinone-AlA systems is substantially lower than that for quinone-ArA systems. Such a large difference in the kqDC values between quinone-AlA and quinone-ArA systems is quite unusual. Present results have been rationalized based on the assumption that an orientational restriction is imposed for the encounter complexes in quinone-AlA systems to undergo ET reactions, which arises because of the localized (at amino nitrogen) shapes of the highest-occupied molecular orbitals (HOMO) of AlA in comparison to the pi-like HOMO of the ArA.  相似文献   

14.
本文报道了三乙酰基丙酮金属配合物淬灭 吨酮光化学敏化α-蒎烯异构化反应的方法, 测定由不同中心金属离子构成的乙酰基丙酮配合物的kq, 通过对所测定的kq数值的进一步分析 , 为鉴别由激发态复合物的电子能量移机制和重原子催化学间窜越机制.提供了新的实验数据.  相似文献   

15.
Two pyridylphenols with intramolecular hydrogen bonds between the phenol and pyridine units have been synthesized, characterized crystallographically, and investigated by cyclic voltammetry and UV/Vis spectroscopy. Reductive quenching of the triplet metal‐to‐ligand charge‐transfer excited state of the [Re(CO)3(phen)(py)]+ complex (phen=1,10‐phenanthroline, py=pyridine) by the two pyridylphenols and two reference phenol molecules is investigated by steady‐state and time‐resolved luminescence spectroscopy, as well as by transient absorption spectroscopy. Stern–Volmer analysis of the luminescence quenching data provides rate constants for the bimolecular excited‐state quenching reactions. H/D kinetic isotope effects for the pyridylphenols are on the order of 2.0, and the bimolecular quenching reactions are up to 100 times faster with the pyridylphenols than with the reference phenols. This observation is attributed to the markedly less positive oxidation potentials of the pyridylphenols with respect to the reference phenols (≈0.5 V), which in turn is caused by proton coupling of the phenol oxidation process. Transient absorption spectroscopy provides unambiguous evidence for the photogeneration of phenoxyl radicals, that is, the overall photoreaction is clearly a proton‐coupled electron‐transfer process.  相似文献   

16.
Charge-transfer quenching of the singlet excited states of cyanoaromatic electron acceptors by pyridine is characterized by a driving force dependence that resembles those of conventional electron-transfer reactions, except that a plot of the log of the quenching rate constants versus the free energy of electron transfer is displaced toward the endothermic region by 0.5-0.8 eV. Specifically, the reactions with pyridine display rapid quenching when conventional electron transfer is highly endothermic. As an example, the rate constant for quenching of the excited dicyanoanthracene is 3.5 x 10(9) M(-1)s(-1), even though formation of a conventional radical ion pair, A*-D*+, is endothermic by approximately 0.6 eV. No long-lived radical ions or exciplex intermediates can be detected on the picosecond to microsecond time scale. Instead, the reactions are proposed to proceed via formation of a previously undescribed, short-lived charge-transfer intermediate we call a "bonded exciplex", A- -D+. The bonded exciplex can be formally thought of as resulting from bond formation between the unpaired electrons of the radical ions A*- and D*+. The covalent bonding interaction significantly lowers the energy of the charge-transfer state. As a result of this interaction, the energy decreases with decreasing separation distance, and near van der Waals contact, the A- -D+ bonded state mixes with the repulsive excited state of the acceptor, allowing efficient reaction to form A- -D+ even when formation of a radical ion pair A*-D*+ is thermodynamically forbidden. Evidence for the bonded exciplex intermediate comes from studies of steric and Coulombic effects on the quenching rate constants and from extensive DFT computations that clearly show a curve crossing between the ground state and the low-energy bonded exciplex state.  相似文献   

17.
The quenching of the n,pi*-excited azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene by 19 heteroatom-containing electron and hydrogen donors, that is, amines, sulfides, ethers, and alcohols, was investigated in the gas phase. Deuterium isotope effects were measured for 9 selectively deuterated derivatives. The data support the involvement of an excited charge-transfer complex, that is, an exciplex, for tertiary amines and sulfides, and a competitive direct hydrogen transfer from the C-H bonds of ethers or from the N-H or O-H bonds of secondary and primary amines or alcohols. The recently observed "inverted" solvent effect for the fluorescence quenching of azoalkanes by amines and sulfides in solution is supported by the observed rate constants in the gas phase, which are substantially larger than those in solution. A more pronounced inverted solvent effect for the weaker electron-donating sulfides and a presumably faster exciplex deactivation result in a switch-over in absolute reactivity relative to tertiary amines in the gas phase. Most importantly, the kinetic data demonstrate that the reactivity of the strongly dipolar O-H and N-H bonds in photoinduced hydrogen abstraction reactions shows a larger decrease upon solvation than that of the less polar C-H bonds. The azoalkane data are compared with previous studies on quenching of n,pi*-triplet-excited ketones in the gas phase.  相似文献   

18.
In this work, the lowest excited singlet states of acridine (Acr), acridinium (AcrH+) and 10-methylacridinium (AcrMe+) are quenched by sulfur-containing amino acids and carboxylic acids in aqueous solution. Both steady-state and time-resolved fluorescence techniques were used to monitor the quenching of fluorescence. Stern–Volmer plots of the fluorescence intensity showed a static component (KS) to the quenching. The experimental KS values were compared to theoretical KS values for outer-sphere complexes based on Debye–Hückel theory and the Fuoss equation. The general agreement between experimental and theoretical KS values indicate that the static quenching can be attributed to non-fluorescing ion pairs associated as simple outer-sphere complexes. The computed values of the interionic distances of the ion pairs are consistent with the ion pairs of the ZAZQ=−1 and −2 cases being solvent-separated ion pairs while those of the ZAZQ=−3 case are contact ion pairs. The effect of the reactants’ charges on the quenching rate constants (dynamic component) was observed for the reactions of AcrMe+ with the anionic forms of the quenchers (having charges ZQ=−1, −2 and −3). The rate constants (extrapolated to ionic strength, μ=0) for the quenching processes were determined to be 0.3–5.3×1010 M−1 s−1 depending on the ionic charge (ZQ) of the quencher used. These trends in the quenching rate constants are rationalized with a quenching scheme for electron transfer. Analogous quenching rate constants for alanine and glycine were found to be at least an order of magnitude lower. Photoinduced electron transfer from the sulfur atom of the quencher molecule to the acridine excited singlet state is suggested to be the most likely mechanism of the process under discussion.  相似文献   

19.
Quenching of the 3MLCT excited state of [Ru(bpy)3]2+ (bpy=bipyridine) by the reduction products (MV*+ and MV0) of methyl viologen (MV2+) was studied by a combination of electrochemistry with laser flash photolysis or femtosecond pump-probe spectroscopy. Both for the bimolecular reactions and for the reactions in an Ru(bpy)3(2+)-MVn+ dyad, quenching by MV*+ and MV0 is reductive and gives the reduced ruthenium complex [Ru(bpy)3]+, in contrast to the oxidative quenching by MV2+. Rate constants of quenching (kq), and thermal charge recombination (krec) and cage escape yields (phi(ce)) were determined for the bimolecular reactions, and rates of forward (kf) and backward (kb) electron transfer in the dyad were measured for quenching by MV2+, MV*+, and MV0. The reactions in the dyad are very rapid, with values up to kf = 1.3 x 10(12) s(-1) for *Ru(bpy)3(2+)-MV*+. In addition, a long-lived (tau = 15 ps) vibrationally excited state of MV*+ with a characteristically structured absorption spectrum was detected; this was generated by direct excitation of the MV*+ moiety both at 460 and 600 nm. The results show that the direction of photoinduced electron transfer in a Ru(bpy)3-MV molecule can be switched by an externally applied bias.  相似文献   

20.
Photoluminescence quenching studies of SmI2 in dry THF were carried out in the presence of five different classes of compounds: ketone, alkyl chloride, nitrile, alkene and imine. The free energy change (DeltaG0) of the photoinduced electron transfer (PET) reactions was calculated from the redox potentials of the donor (SmI2) and acceptors. The bimolecular quenching constants (k(q)) derived from the Stern-Volmer experiments parallel the free energy changes of the PET processes. The observed quenching constants were compared with the theoretically derived electron transfer rate constants (k(et)) from Marcus theory and found to be in good agreement when a value of lambda = 167 kJ mol(-1) (40 kcal mol(-1)) was used for the reorganization energy of the system. A careful comparison of the excited state dynamics of SmII in the solid state to the results obtained in solution (THF) provides new insight in to the excited states of SmII in THF. The activation parameters determined for the PET reactions in SmI2/1-chlorobutane system are consistent with a less ordered transition state and high degree of bond reorganization in the activated complex compared to similar ground state reactions. Irradiation studies clearly show that SmI2 acts as a better reductant in the excited state and provides an alternative pathway for rate enhancement in known and novel functional group reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号