首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ti–6Al–4V alloy is an important aviation material, but has a poor resistance to slide wear. Laser cladding of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 preplaced powders on the Ti–6Al–4V alloy can form the Ti3Al/γ‐Ni matrix composite coating, which improves the wear resistance of the substrate. In this study, the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 laser‐cladded coating was researched by means of X‐ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The experimental results indicate that under the action of SiC/nano‐CeO2, this composite coating exhibited a fine microstructure. Furthermore, the proper content of nano‐CeO2 decreased the crack tendency. The results above indicated that, it is feasible to improve the tribological property of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 laser‐cladded coating by adding of SiC/nano‐CeO2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Ni–Co–P/nano‐sized Si3N4 composite coating was successfully fabricated on aluminum alloys by electroless plating in this work. The surface and cross‐sectional morphologies, composition, microstructure, microhardness, friction and wear behavior of deposits were investigated with SEM, EDS, XRD, Vickers hardness and high‐speed reciprocating friction, respectively. It was found that a Ni–Co–P/nano‐sized Si3N4 composite coating on aluminum alloy substrate is uniform and compact. The existence of nano‐sized Si3N4 particles in the Ni–Co–P alloy matrix causes a rougher surface with a granular appearance, and increases the microhardness but decreases the friction coefficients and wear rate of electroless coatings. Meanwhile, the effects of heat treatment at 200, 300, 400 and 500 °C for 1 h on the hardness and tribological properties were researched. It is revealed that both of the microhardness and tribological properties of Ni–Co–P coatings and Ni–Co–P/Si3N4 composite coatings increase with the increase of heating temperature in the range of 200–400 °C, but show different behavior for the two coatings after annealing at 500 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Composite Ni–P/nano‐TiO2 coatings were prepared by simultaneous electroless deposition of Ni–P and nano‐TiO2 on a low carbon steel substrate. The deposition was carried out from stirred solutions containing suspended nano‐TiO2 particles. The Ni–P and Ni–P/nano‐TiO2 coatings before and after heat treatment were characterized by X‐ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The micro‐structural morphologies of the coatings significantly varied with the nano‐TiO2 content. The corrosion resistance of as‐plated and heat‐treated Ni–P and Ni–P/nano‐TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5% NaCl solution. Ni–P/nano‐TiO2 coating exhibited superior corrosion resistance over Ni–P coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
《印度化学会志》2023,100(1):100822
Ni–7Cr and Ni–7Cr–2Al (wt.%) nanocomposite coatings were fabricated by co-electrodeposition of Ni with Cr (40 nm) or and Al (75 nm) nanoparticles from a nickel sulfate bath, their microstructure, friction and wear performance were comparably evaluated in order to elucidate the effect of Al nanoparticles on the properties of nanocomposite coatings. The results indicated that the co-deposition of minor Al nanoparticles significantly increases the microhardness and wear resistance because Al nanoparticles with surface amorphous oxides layers exert the dispersion-strengthening effect like Al2O3 nanoparticles.  相似文献   

5.
This paper presents an experimental study of roughness characteristics of electroless Ni? P coatings. Optimization of coating process parameters is done with multiple surface roughness characteristics based on Taguchi method coupled with grey relational analysis. Experiments are carried out by utilizing the combination of process parameters based on L27 Taguchi orthogonal design with three process parameters, viz. bath temperature, concentration of nickel source solution and concentration of reducing agent. Results show that concentration of the reducing agent and its interaction with concentration of the nickel source solution have significant influence in controlling the roughness characteristics of electroless Ni? P coating. Grey‐based Taguchi method is found to optimize the coating parameters fairly well. The surface morphology and composition of coatings are also studied with the help of scanning electron microscopy, energy dispersed X‐ray analysis and X‐ray diffraction analysis. No significant change in nickel and phosphorous content of coatings occurs with annealing. The Ni? P deposit is nanocrystalline in the as‐plated condition, and upon heat treatment at 400 °C it produces Ni5P2, Ni2P, and NiP2 as major compound constituents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of Y2O3 on the microstructure, phase composition of the coatings, microhardness and wear resistance of cobalt‐based composite coatings prepared by laser cladding were investigated. The TA15 titanium alloy was selected as substrate which the cobalt‐based composite powder with different content of Y2O3 was cladded on. The microstructure of the coatings was observed by scanning electron microscope (SEM) and metallurgical microscope. The phase structure of the coatings was determined by X‐ray diffraction (XRD), and the microhardness and wear resistance of the coatings were measured by hardness tester and wear testing machine. The results show that the rare earth oxide Y2O3 can refine and purify the microstructure of the coatings, reduce the porosities and cracks and improve compactness of the coatings. Moreover the addition of Y2O3 improves the microhardness of the coatings and reduces the friction coefficient, thus improving the wear property of the coatings. And the wear resistance of the coating with Y2O3 has improved about 50 times; the highest value of microhardness in the coating is HV1181.1. And 0.8 wt% content of Y2O3 in the coating is the best choice for improving the microhardness and wear resistance of the coating. It is feasible to improve the microstructure and tribological properties of laser cladding coatings by adding of Y2O3. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The microstructural characteristics of Ce conversion coatings on carbon fiber reinforced Al matrix (Cf/Al) composites and Ce conversion coatings on Ni? P plated Cf/Al composites were studied by SEM, AFM, TEM and XPS. The Ce conversion coating on the Ni? P plated composite does not have obvious microcracks, which can be found easily in Ce conversion coatings. The Ce conversion coating on Ni? P plated composite has a lower surface roughness profile arithmetic mean deviation (Ra) than Ce conversion coating, as seen by AFM. Because of the inhomogeneity of the material surface and the different levels of deposition of Ce conversion coatings at the different sites, nonhomogeneous sites would promote microcrack formation of the Ce conversion coatings. The Cf/Al composite surface has lessuniformity than Ni? P plated composite, leading to more prominent microcracks. Selected area electron diffraction (SAED) patterns of Ce conversion coating could not be indexed nor matched closely to any of the oxides (Ce2O3, Ce7O12, Ce6O11) or hydroxides (Ce(OH)3) that are listed in the Powder Diffraction File maintained by Diffraction Data, but for Ce conversion coating on the Ni? P plated composite the data matched closely with that of CeO2 or Ce6O11. The XPS results showed that the Ce conversion coating mainly contained both Ce3+ and Ce4+ species, but Ce4+ species were the dominant oxidation state on Ni? P coating with Ce conversion deposition. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
《印度化学会志》2023,100(4):100966
In the present study, tribological and corrosion behaviour of electroless Ni–B–W (ENB-W) coatings prepared from stabilizer-free baths and deposited on AISI 1040 steel substrates were examined. Three distinct coating bath temperatures (85 °C, 90 °C, and 95 °C) were varied for coating deposition. The coatings showed nodular morphology. Thermogravimetric study of ENB-W coatings revealed improved thermal stability attained at 95 °C bath temperature. The microhardness of ENB-W coating was 645, 690, and 720 HV100 at bath temperatures of 85 °C, 90 °C, and 95 °C respectively. The inclusion of W to Ni–B coating enhanced the hardness by ∼150 HV100. On a pin-on-disc tribometer, wear test was conducted. The precipitation of Ni (111) and its borides occurred post sliding wear at high temperatures (300 °C). Ni (111) crystallite size decreased because of high temperature sliding wear at 300 °C with an increase in coating bath temperature. With a reduction in crystallite size at high temperatures, both wear rate and COF decreases. The scratch hardness and first critical load of failure of the coatings was determined using a scratch tester. Using potentiodynamic polarization, corrosion resistance of ENB-W coatings in 3.5% NaCl was investigated. ENB-W coatings could provide shielding to AISI 1040 steel from corrosion. Though the corrosion resistance is poor with respect to lead stabilized coatings.  相似文献   

9.
LaNi1???x Cu x O3 (x?=?0.05, 0.10, 0.30) coated electrodes were prepared by brush painting using Ni foam substrates in order to increase its active surface area. For comparison, coatings with x?=?0.05 were also prepared using vitreous carbon substrates. Cyclic voltammetry was used to evaluate the coating roughness (R f). Values between 5,145?±?148 and 6,334?±?277 were obtained, depending on the x value, for the coatings on Ni foam. These results show that the electrodes prepared with LaNi1???x Cu x O3 powder, obtained at 600 °C, lead to a big increase on the oxide electrode roughness when compared with LaNiO3 electrodes prepared by a similar method. Much lower values were obtained for the coatings on vitreous carbon indicating that the substrate nature is also a key factor for the preparation of high surface area electrodes. The calculated kinetic parameters for the oxygen evolution reaction (OER) show that the partial replacement of Ni by Cu has no beneficial effect on the intrinsic catalytic activity of the coatings. On the other hand, a big increase on the active area is observed even for small amounts of Cu (x?=?0.05), leading to a better overall OER performance for the LaNi0.95Cu0.05O3 coating on Ni foam. For this composition, the activity is dominated by geometric effects.  相似文献   

10.
Sol-gel hybrid organic-inorganic and inorganic SiO2-based protective coatings with and without added 3 m glass particles were developed and tested for their corrosion and wear behavior of an stainless steel substrate (AISI316L). The corrosion resistance greatly increases by incorporating glass particles in the sols. The incorporation of particles in the coatings allows the synthesis of thicker crack-free coatings. On the other hand, the corrosion resistance increases for coatings with a higher organic content obtained at lower sintering temperature. These coatings are also highly stable in saline aqueous solutions. However, the wear resistance is badly affected by the hybrid character of the SiO2 matrix. The optimum coating process in terms of corrosion and wear resistance, appears to be a hybrid system with a dense SiO2 network achieved at intermediate sintering temperatures.  相似文献   

11.
Ultrathin ZnO, ZrO2, and Al2O3 surface coatings are deposited via atomic layer deposition (ALD) with high conformality and atomic scale thickness control to enhance the electrochemical performance of LiMn2O4 for applications in lithium ion batteries. Two types of ALD-modified LiMn2O4 electrodes are fabricated: one is ALD-coated LiMn2O4 composite electrode and the other is electrode composed of ALD-coated LiMn2O4 particles and uncoated carbon/polyvinylidenefluoride network. Cycling performance and cyclic voltammetric patterns reveal that ZnO ALD coating is the most effective protective film for improving the electrochemical performance of LiMn2O4 at either 25 or 55 °C, followed by ZrO2 and Al2O3. After 100 electrochemical cycles in 1 C at 55 °C, the electrode consisting of LiMn2O4 particles coated with six ZnO ALD layers (as thin as ~1 nm) delivers the highest final capacity, more than twice that of the bare electrode. It is also found that amphoteric oxide coating on LiMn2O4 particles can enhance the cycleability of LiMn2O4 more effectively than coating on the composite electrode. Furthermore, for ALD coating either on the composite electrode or on LiMn2O4 particles, the effect of oxide ALD modification for improving capacity retention and increasing specific capacity of LiMn2O4 is more phenomenal at elevated temperature than at room temperature.  相似文献   

12.
采用浸渍法制备了单一载体(Al2O3、ZrO2、CeO2)和ZrO2、CeO2改性的Al2O3复合载体的Ni催化剂,考察了在甲烷部分氧化制备合成气反应中的催化性能。通过N2-物理吸附、H2程序升温还原、X射线衍射、NH3程序升温脱附和程序升温氧化等技术对催化剂进行了表征。结果表明,在单一载体催化剂中,Ni/Al2O3具有较大的比表面积,其初始反应活性较高,但该催化剂表面易形成大量的积炭而快速失活。Ni/ZrO2和Ni/CeO2催化剂比表面积较小,活性金属Ni在其表面分散性差,催化剂具有较低的CH4转化率。而CeO2和ZrO2改性的Al2O3复合载体催化剂,具有较大的比表面积,反应活性明显高于单一载体催化剂。CeO2-Al2O3复合载体催化剂具有最高的反应活性和较好的反应稳定性。同时表明,含CeO2催化剂反应后表面积炭较少,CeO2的储放氧功能增强了催化剂对O2的活化,提高催化剂活性的同时,可以抑制积炭的生成。  相似文献   

13.
Transparent, superhydrophobic coating films have been prepared on polymer substrates at low temperatures through the sol-gel method. Al2O3 gel films were prepared on poly(ethylene terephthalate) substrates from Al(O-sec-C4H9)3 chemically modified with ethyl acetoacetate. A small roughness of about 20–50 nm was found to form on the surface of the Al2O3 gel films dried at room temperature and then immersed in hot water at 60°C. The electron diffraction measurements have shown that this roughened surface consists of pseudoboehmite nanocrystals. The coating of hydrolyzed fluoroalkyltrimethoxysilane on the Al2O3 gel films with the small roughness produced transparent, superhydrophobic films with contact angle for water larger than 150°.  相似文献   

14.
In this work, continuous conversion coatings on the surface of in situ TiB2 particulate reinforced A356 composite were formed successfully by cerium surface treatment for the first time. Scanning electron microscope (SEM) analysis showed that the conversion coatings were inhomogeneous and could be divided into two types of regions, namely, fine crack region and noncrack region. Many cerium‐rich nano‐nodules were uniformly distributed in the whole coatings. Energy dispersive spectroscopy (EDS) analysis testified that the crack coatings mainly covered the interdendritic sites occupied by TiB2 particulates and Si phases. X‐ray photoelectron spectroscopy (XPS) analysis indicated that the conversion coatings were composed of CeO2, Ce2O3, Ce(OH)4, Ce(OH)3, and a little amount of Al2O3. The electrochemical polarization tests showed that the cerium‐conversion treatment markedly improved the corrosion resistance of in situ TiB2p/A356 composite in chloride environment, and the protection degree of the coatings was superior to that of conventional chromate‐conversion coating. According to these results, the formation mechanism of cerium‐conversion coatings was discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
NiCo–Al2O3 composite coatings were prepared by electrodeposition in a sulfamate plating bath containing Al2O3 particles to be co-deposited under sonication. For reliable determination of the microstructure, detailed studies on composite cross-sections were carried out by energy-dispersive spectrometer (matrix composition, particle content) and FE-SEM/electron backscattered diffraction data (particle distribution, grain size), accompanied by XRD analyses concerning texture, lattice parameter, grain size, and residual stress. The NiCo matrix with a Co/Co + Ni ratio up to 0.4 is a face-centered cubic solid solution with <100> and <110> fiber textures. The distribution of the particles (size 250 nm) was well-dispersed and enhanced up to 15 wt.% by ultrasound application during plating. Vickers hardness increased up to 50% by dispersion hardening. First-order residual stress in the matrix increased with rising Co content, thus decreasing wear resistance and revealing the complex of composite properties with partially opposite effects.  相似文献   

16.
Al2O3, Al2O3/Al and Al2O3–Al graded coatings were fabricated on China low activation martensitic steel and silicon substrates by RF magnetron sputtering. The coating composition and cross‐section morphologies were investigated using X‐ray photoelectron spectroscopy, Auger electron spectroscopy and field‐emission scanning electron microscopy. The mechanical properties of the coatings were studied using nanoindentation, wafer‐curvature measurements and microscratch tests. The results show that usable Al2O3–Al graded coatings could be fabricated. With a more continuous compositional gradient, the interface zone was more compact. The hardness and elastic modulus of Al2O3–Al graded coatings were less than those of Al2O3 coatings, but greater than those of Al2O3/Al coatings. After annealing at 773 K for 3 h, the hardness of Al2O3–Al graded coating showed a small increase. The residual stresses in Al2O3–Al graded coatings declined to about 0.3 GPa, compared with the 6.6 GPa for Al2O3 coating. The adhesion of Al2O3 was improved by deposition of Al or Al compositional gradient oxide layers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
It is shown that aqueous suspension-emulsion electrolytes containing sodium silicate, siloxane-acrylate emulsion, and dispersed particles of oxides are promising for direct synthesis by the plasma-electrolytic oxidation method of coatings with multicomponent composition on titanium and aluminum. The formation processes, composition, and structure of the coatings were studied in electrolytes with 1–4-μm particles of V2O5, B2O3, or Al2O3. The average content of metals and nonmetals of dispersed particles in the surface part of the coatings is ~1–2 at %. The coatings have a developed surface morphology and contain in the surface part up to 50–73 at % carbon.  相似文献   

18.
In this paper, nanoalumina (Al2O3) highly filled ethylene propylene diene monomer (EPDM) composites are prepared, and the mechanical (static and dynamic) properties and thermal conductivity are investigated systemically through various characterization methods. Furthermore, influences of in situ modification (mixing operation assisted by silane at high temperature for a certain time) with the silane‐coupling agent bis‐(3‐triethoxy silylpropyl)‐tetrasulfide (Si69) and stearic acid (SA) pretreatment on the nano‐Al2O3 filled composites are as well investigated. The results indicate that nano‐Al2O3 particles can not only perform well in reinforcing EPDM, but also improve the thermal conductivity significantly. Assisted by in situ modification with Si69, the mechanical properties (especially dynamic mechanical properties) of the nano‐Al2O3 filled composites are improved obviously, without influencing the thermal conductivity. By comparing to the traditional reinforcing fillers, such as carbon black (grade N330) and silica, in situ modified nano‐Al2O3 filled composites exhibit excellent performance in mechanical (static and dynamic) properties as well as better thermal conductivity, especially lower compression heat build‐up and better fatigue resistance. In general, our work indicates that nano‐Al2O3, as the novel thermal conductive reinforcing filler, is suitable to prepare rubber products serving in dynamic conditions, with the longer expected service life. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas (SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures (600–1200 °C). CO methanation reaction was carried out in the temperature range of 300–600 °C at different weight hourly space velocities (WHSV = 30000 and 120000 mL·g?1·h?1) and pressures (0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 °C (Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures (600, 800 and 1000 °C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.  相似文献   

20.
Summary The relationship between the properties of plasma spray powders and the resultant coating has been investigated. ZrO2 powders, differing in grain size, state of agglomeration and morphology, have been used and coating properties such as microstructure, porosity, roughness, hardness, and wear resistance are described. Agglomerated powders cause high porosity, while sphericalized particles yield very dense layers. The homogeneity of an agglomerate is also responsible for the homogeneity of the microstructure of the coating. By selecting powders with defined characteristics it is possible to produce plasma spray coatings with defined properties; the microstructure of the layers can be varied over a wide range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号