首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An optimized microwave‐assisted extraction (MAE) method and an efficient HPLC analysis method were developed for fast extraction and simultaneous determination of oleanolic acid and ursolic acid in the fruit of Chaenomeles sinensis. The open vessel MAE process was optimized by using a central composite experimental design. The optimal conditions identified were microwave power 600 W, temperature 52°C, solvent to material ratio 32 mL/g and extraction time 7 min. The results showed that MAE is a more rapid extraction method with higher yield and lower solvent consumption. The HPLC–photodiode array detection analysis method was validated to have good linearity, precision, reproduction and accuracy. Compared with conventional extraction and analysis methods, MAE–HPLC–photodiode array detection is a faster, convenient and appropriate method for determination of oleanolic acid and ursolic acid in the fruits of C. sinensis.  相似文献   

2.
A comparison of four extraction techniques used for the isolation of 14 explosive compounds (Method 8330-Explosives) from spiked soil samples is described. Soxhlet warm extraction (SWE), pressurized solvent extraction (PSE), microwave assisted extraction (MAE) and supercritical fluid extraction (SFE) were included. The effects of basic extraction conditions – i.e. type of extraction solvent, temperature, pressure, and extraction time – were investigated. The best extraction recovery of the monitored compounds from spiked soil was obtained using pressurized solvent extraction. Recoveries of explosives using the PSE technique were in the range from 65 to 112%. Extraction recoveries by Soxhlet warm extraction and supercritical fluid extraction reached 65–99% and 52–75%, respectively. The lowest extraction recoveries (28–65%) were obtained using microwave assisted extraction. A very low extraction recovery for tetryl was observed in all cases but the best results were achieved by pressurized solvent extraction (58%).  相似文献   

3.
A new method, non-polar solvent microwave-assisted extraction (NPSMAE), was applied to the extraction of essential oil from Zingiber officinale Rosc. in closed-vessel system. By adding microwave absorption mediumcarbonyl iron powders (CIP) into extraction system, the essential oil was extracted by the non-polar solvent (ether) which can be heated by CIP. The constituents of essential oil obtained by NPSMAE were comparable with those obtained by hydrodistillation (HD) by GC-MS analysis, which indicates that NPSMAE is a feasible way to extract essential oil from dried plant materials. The NPSMAE took much less extraction time (5 min) than HD (180 min), and its extraction efficiency was much higher than that of conventional polar solvent microwave-assisted extraction (PSMAE) and mixed solvent microwave-assisted extraction (MSMAE). It can be a good alternative for the extraction of volatile constituents from dried plant samples.  相似文献   

4.
A simple and rapid microwave assisted extraction (MAE) method is presented for the determination of atrazine and four organophosphorus pesticides (parathion-methyl, chlorpyriphos, fenamiphos and methidathion) in orange peel. The experimental variables that affect the MAE method, such as temperature, sample quantity, extraction time, nature and volume of organic solvents, were optimized. The MAE method was optimized using an experimental design. The results suggest that temperature and sample quantity are statistically significant factors. It was concluded that the five pesticides could be efficiently extracted from 1.5–2.5 g of orange peel with 10 mL of hexane/acetone (1?:?1) mixture at 90?°C in 9 min with microwave power set at 50% (475 W). After optimization these factors, recoveries ranged from 93 to 101% with a relative standard deviation ranging from 1 to 3%. The extracts were analyzed by gas chromatography with a nitrogen-phosphorus detector (GC-NPD).  相似文献   

5.
SPE is a commonly applied technique for preconcentration of pesticides from water samples. Microwave‐assisted extraction (MAE) technique is the extraction applied for preconcentration of different compounds from solid samples. SPE coupled with MAE is capable of preconcentrating these compounds from water samples too. This investigation was aimed at improving the efficiency of atrazine, alachlor, and α‐cypermethrin pesticide extraction from the spiked water samples applying SPE followed by MAE. In this way, MAE served for elution of pesticides from C18‐extraction disks with solvent heated by microwave energy. Various elution conditions were tested for their effects on the extraction efficiency of the SPE–MAE combined technique. Several parameters, such as elution solvent volume (mL), elution temperature (°C), and duration of elution (min), affect the extraction efficiency of the SPE–MAE coupled system and need to be optimized for the selected pesticides. In order to develop a mathematical model, 15 experiments were performed in the central composite design. The equation was then used to predict recoveries of the pesticides under specific experimental conditions. Optimization of microwave extraction was accomplished using the genetic algorithm approach. Best results were achieved using 20 mL of ethanol at 60°C. Optimal hold time was 5 min and 24 s. The SPE–MAE combination was also compared with the conventional SPE extraction technique with elution of a nonpolar or a moderately polar compound with nonpolar solvents.  相似文献   

6.
An optimized microwave‐assisted extraction (MAE) method and RP‐HPLC method were developed for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of Forsythia suspensa. The key parameters of the open‐vessel MAE process were optimized. A mixed solvent of methanol and water (70:30, v/v) was most suitable for the simultaneous extraction of the three components. The sample was soaked for 10 min before extraction. The optimized conditions were: microwave power 400 W, temperature 70°C, solvent‐to‐material ratio 30 mL/g, and extraction time 1 min. Compared to conventional extraction methods, the proposed method can simultaneously extract the three components in high yields and was proved to be a more rapid method with a lower solvent consumption. The optimized HPLC–photodiode array detection analysis was validated to have good linearity, precision, accuracy, and sensitivity. The developed MAE followed by RP‐HPLC is a fast and appropriate method for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of F. suspensa.  相似文献   

7.
A method for PEG‐based microwave‐assisted extraction (MAE) of flavonoid compounds from persimmon leaves has been successfully developed. The extraction efficiency of total flavonoid content was evaluated by the chromatographic peak areas of quercetin and kaempferol, which are two bioactive components typically found in persimmon leaves. The best combination of extraction parameters was obtained with response surface methodology. A microwave power of 525 W, liquid to solid ratio of 17:1 mL/g, and PEG aqueous solution concentration of 60% w/w were identified as the optimum parameters. Extraction dynamics analysis indicated that the quercetin, kaempferol, and total flavonoid contents were rising with increasing extraction time up to 20–25 min, from which point onwards they all decreased. Under the optimum conditions, quercetin, kaempferol, and total flavonoid contents obtained from the sample were 1.20 ± 0.05, 0.64 ± 0.11, and 16.90 ± 0.06 mg/g, respectively. Compared with ethanol‐based MAE, and ethanol‐based and PEG‐based ultrasonic‐assisted extractions, PEG‐based MAE had higher efficiency for the extraction of flavonoid compounds from persimmon leaves. Overall, PEG‐based MAE represents an efficient choice for the extraction of bioactive substances from traditional Chinese medicines.  相似文献   

8.
The microwave assisted extraction (MAE) technique has been evaluated for the extraction of active pharmaceutical ingredients (API) from various solid dosage forms. Using immediate release tablets of Compound A as a model, optimization of the extraction method with regards to extraction solvent composition, extraction time and temperature was briefly discussed. Complete recovery of Compound A was achieved when samples were extracted using acetonitrile as the extraction solvent under microwave heating at a constant cell temperature of 50 degrees C for 5 min. The optimized MAE method was applied for content uniformity (single tablet extraction) and potency (multiple tablets extraction) assays of release and stability samples of two products of Compound A (5 and 25mg dose strength) stored at various conditions. To further demonstrate the applicability of MAE, the instrumental extraction conditions (50 degrees C for 5 min) were adopted for the extraction of montelukast sodium (Singulair) from various solid dosage forms using methanol-water (75:25, v/v) as the extraction solvent. The MAE procedure demonstrated an extraction efficiency of 97.4-101.9% label claim with the greatest RSD at 1.4%. The results compare favorably with 97.6-102.3% label claim with the greatest RSD at 2.9% obtained with validated mechanical extraction procedures. The system is affordable, user-friendly and simple to operate and troubleshoot. Rapid extraction process (7 min/run) along with high throughput capacity (up to 23 samples simultaneously) would lead to reduced cycle time and thus increased productivity.  相似文献   

9.
In this work, microwave distillation assisted by Fe2O3 magnetic microspheres (FMMS) and headspace single‐drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent‐free technique for the determination of volatile compounds in Chinese herbs.  相似文献   

10.
Yield of trans-resveratrol from Pinot Noir-grape pomace obtained by microwave-assisted extraction (MAE) through an orthogonal experiment (16 (4(4))) was investigated to get the best extraction conditions. In this method, the highest yield was obtained when the extraction solvent used ethanol; the ratio of raw material to solvent, the extraction time, the extraction temperature and microwave irradiation power were 1:20 (g mL(-1)), 30 min, 55°C and 1.0 kW, respectively. The average yield of trans-resveratrol was 90.87%, and the recovery was in the range of 85.49-89.04% with relative standard deviation lower than 1.39%. Then, the extract of MAE was separated by NKA-9 macroporous resin and re-crystallisation. Finally, the purity of trans-resveratrol was 97.47%.  相似文献   

11.
改进的微波辅助无溶剂法提取薄荷和陈皮中的挥发油组分   总被引:1,自引:0,他引:1  
An improved solvent free microwave extraction, in which a kind of microwave absorption medium (carbonyl iron powder) was used, was applied to the extraction of essential oil from dried menthol mint and orange peel without addition of any solvent and pretreatment. It took much less time of extraction (30 min) than microwave-assisted hydrodistillation (90 min) and conventional hydrodistillation (180 min). The kinds of chemical compositions in essential oil extracted by different methods were almost the same and such improved solvent free microwave extraction can be a feasible way in extraction of essential oil from dried plant materials.  相似文献   

12.
微波辅助萃取/气相色谱-质谱联用分析蔬菜中的有机磷农药   总被引:29,自引:0,他引:29  
杨云  张卓旻  李攻科 《色谱》2002,20(5):390-393
建立了微波辅助萃取(MAE)/气相色谱-质谱联用法(GC-MS)测定蔬菜样品中二嗪磷、水胺硫磷的分析方法,研究了不同溶剂的萃取效率。选择二氯甲烷为萃取溶剂,采用二因素三水平的正交设计实验优化了萃取溶剂体积和萃取时间。方法的线性范围分别为二嗪磷和对硫磷4ng/g-400ng/g,水胺硫磷20ng/g-400ng/g,检出限分别为二嗪磷和对硫磷4ng/g-400ng/g、水胺硫磷20ng/g-400ng/g,检出限分别为二嗪磷0.29ng/g、对硫磷1.70ng/g、水胺硫磷2.30ng/g。测定200.0ng/g和50.0ng/g加标蔬菜样品,回收率为72.2%-102.0%,RSD为1.5%-11.0%。与传统的机械振荡萃取法相比,不仅萃取效率相当,而且还具有省时省溶剂的优点。  相似文献   

13.
Microwave-assisted extraction (MAE) was applied in the extraction of phenolics from Canarium album L. Effects of various conditions including the solvent, solvent to material ratio, microwave power and irradiation time on extraction yield of phenolics were investigated. In terms of the optimal conditions of MAE, it was concluded that 70% (v/v) of ethanol was the proper extraction solvent, the solvent to material ratio was 10 : 1 (mL : g), and the microwave power and irradiation time were 600 W and 15 s, respectively. Compared with normal stirring extraction and ultrasound-assisted extraction, the MAE of phenolics from C. album L. was more time efficient and gave a high extraction rate. More than 1.2% extraction yield was achieved with MAE, and the purity of the phenolics in the extract product was up to 25%. In addition, by ultraviolet-visible (UV) spectrometry and electrospray ionised mass spectrometry (ESI/MS), the main phenolic compound in the extract product was identified as gallic acid.  相似文献   

14.
Traditional hydrodistillation (HD), supercritical fluid extraction (SFE), organic solvent extraction (SE), and water microwave assisted hydrodistillation (MAHD) techniques were compared and evaluated for their effectiveness in the isolation of rosemary essential oil. The microwave assisted hydrodistillation technique was optimized in terms of both delivered power and time duration. The extracts/distillates were analyzed by GC and GC-MS. Microwave distillation, which exploits the physical action of microwaves on plants, showed a series of advantages over the other approaches: low cost, use of water in sample pre-treatment step, greatly reduced isolation time, and attainment of high quality essential oil distillate. Moreover, the absence of environmental impact of this innovative technique was also emphasized.  相似文献   

15.
Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.  相似文献   

16.
In this paper, microwave-assisted extraction (MAE) of oxymatrine from Sophora flavescens were studied by HPLC-photodiode array detection. Effects of several experimental parameters, such as concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature, and extraction time on the extraction efficiencies of oxymatrine were evaluated. The optimal extraction conditions were 60% ethanol, a 20:1 (v/v) ratio of liquid to material and extraction for 10 min at 50 °C under 500 W microwave irradiation. Under the optimum conditions, the yield of oxymatrine was 14.37 mg/g. The crude extract obtained could be used as either a component of some complex traditional medicines or for further isolation and purification of bioactive compounds. The results, which indicated that MAE is a very useful tool for the extraction of important phytochemicals from plant materials, should prove helpful for the full utilization of Sophora flavescens.  相似文献   

17.
The purpose of the research was to investigate the multiple response optimizations for the extraction of protopine and allocryptopine from the stems of Macleaya cordata (Willd) R. Br. by using microwave‐assisted extraction (MAE). A three‐level, three‐factor Box–Behnken design of response surface methodology was used to develop response model, and desirability function was employed to optimize the effects of main extraction parameters. Three variables, ethanol concentration (20–80%, v/v), extraction temperature (30–70°C) and solvent/solid ratio (10:1 to 30:1, mL/g), were investigated in this study. The results showed that the optimum parameters of MAE were ethanol concentration of 45.2 % (v/v), extraction temperature of 54.7°C and solvent/solid ratio of 20.4:1 (mL/g). Under these conditions, the extraction yields of protopine and allocryptopine were 89.4 and 102.0%, respectively, and the extracta sicca yield was 12.5%. The combination use of response surface methodology, Box‐Behnken design and the appropriate desirability function could provide an insight into a lab‐scale MAE process, and help to develop procedures for commercial production of active ingredients from medical plants.  相似文献   

18.
微波辅助衍生化GC-MS法测定食用油中的脂肪酸   总被引:8,自引:3,他引:5  
利用微波技术,研究了用KOH-甲醇,H2SO4-甲醇-甲苯、HCl-甲醇等不同体系对食用油中的脂肪酸进行了衍生化,系统地比较了它们的优劣势,以及适合的分析对象,在1min内完成衍生物生化反应,选用正庚烷代替传统方法的苯+石油醚作为脂肪酸甲酯蝗提取剂,与传统消解及衍生化方法相比,具有节省溶剂,省时,易于操作等特点。  相似文献   

19.
Three types of solvent extraction methods (by soxhlet, sonicator and microwave) for pesticide recoveries in solid matrices were compared and evaluated using the standard addition method. Variables (solvent and extraction time) for the optimization of microwave assisted extraction (MAE) were also studied. Three organochlorine pesticides (BHC, DDE, and Dildrin) were chosen for this particular study because of their great presence in the soil where the samples were collected and their positive association with the risk of breast cancer. Comparison of the results obtained indicates that the efficiency of extraction varies, depending on the matrices and the pesticides analyzed. The study focused on the variation in the extraction quantities of different methods in different matrices. The extraction conditions were optimized for MAE with a single matrix (bark) and applied to the rest in order to study the variability in results. Gas chromatography with an electron capture detector (GC–ECD) was used for analysis of the extracts. The results show that even though the use of MAE improved extraction in some of the matrices studied, the extraction method must be optimized whenever a new matrix is evaluated. A statistical comparison indicated that pesticide recoveries and method reproducibility of microwave extraction compared less favorably with the conventional soxhlet method in some of the matrices, whereas the sonicator method was not found to be as efficient as the others.  相似文献   

20.
A simple and rapid microwave assisted extraction (MAE) method is presented for the determination of atrazine and four organophosphorus pesticides (parathionmethyl, chlorpyriphos, fenamiphos and methidathion) in orange peel. The experimental variables that affect the MAE method, such as temperature, sample quantity, extraction time, nature and volume of organic solvents, were optimized. The MAE method was optimized using an experimental design. The results suggest that temperature and sample quantity are statistically significant factors. It was concluded that the five pesticides could be efficiently extracted from 1.5-2.5 g of orange peel with 10 mL of hexane/acetone (1: 1) mixture at 90 degrees C in 9 min with microwave power set at 50% (475 W). After optimization these factors, recoveries ranged from 93 to 101% with a relative standard deviation ranging from 1 to 3%. The extracts were analyzed by gas chromatography with a nitrogen-phosphorus detector (GC-NPD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号