首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
三种离子液体的合成及其对棉纤维素溶解性能的比较研究   总被引:1,自引:0,他引:1  
段衍鹏  史铁钧  郭立颖  李忠 《化学学报》2009,67(10):1116-1122
合成了三种含有羧基或醚基的离子液体, 1-羧甲基-3-乙基咪唑氯化物([CmEIM]Cl)、1-甲氧乙基-3-乙基咪唑氯化物([C2OC1-EIM]Cl)和1-[2-(2-氯乙氧基)乙基]-3-乙基咪唑氯化物([Cl-C2OC2-EIM]Cl), 用FT-IR和1H NMR对它们的化学结构进行了表征. 测定并比较了这三种离子液体对棉纤维素的溶解能力, 并用FT-IR, SEM和XRD研究了溶解前和再生后纤维素的化学结构、形貌及晶体结构的变化. 结果表明, 在三种离子液体中, [C2OC1-EIM]Cl对棉纤维素的溶解性最好. 在溶解过程中, 随着温度的升高, 纤维素在离子液体中的溶解度增加, 但聚合度下降, 特别是在[Cl-C2OC2-EIM]Cl中溶解时, 纤维素的聚合度下降最严重. 研究结果表明, 含羧基的离子液体会由于分子间氢键的缔合作用降低其对纤维素的溶解性. 侧基较大的离子液体对纤维素的溶解性也较差.  相似文献   

2.
纤维素的绿色溶解体系   总被引:1,自引:0,他引:1  
纤维素是一种天然的可再生资源,将其溶解是对其有效利用的关键。本文从溶解机理的角度对环境友好的非反应型纤维素溶剂,包括无机溶剂和有机溶剂体系,进行了重点介绍。无机溶剂体系包括碱/尿素/水体系、碱/硫脲/水体系等,其是在低温下通过尿素或硫脲小分子形成稳定的氢键网络包裹自由的纤维素大分子,使之不能相互结合,从而使碱不断打开纤维素分子间、分子内氢键获得更多的自由纤维素分子,并最终使其溶解。有机溶剂体系包括胺氧化物和离子液体,其是通过电子给予体和电子接受体与纤维素羟基作用实现纤维素的溶解。  相似文献   

3.
郭立颖  史铁钧  段衍鹏 《应用化学》2009,26(9):1005-1010
以氯丙烯和N-乙基咪唑为原料合成了离子液体氯化1-烯丙基-3-乙基-咪唑盐([AEIM]Cl),利用FT-IR和1HNMR对其化学结构进行了表征。采用微波加热法溶解微晶纤维素(MCC),考察 [AEIM]Cl对纤维素的溶解性能。研究了NaOH、微波和高压等3种预处理方式对微晶纤维素的相对结晶度、聚合度及溶解率的影响。利用FT-IR、XRD、TGA和SEM分别对溶解后得到的再生纤维素的化学结构、晶型变化、热稳定性及表观形貌进行测试与分析。结果表明,合成的离子液体是目标产物,对微晶纤维素表现出很好的溶解能力,且高温高压条件下15%的NaOH水溶液对微晶纤维素处理后,得到的纤维素相对结晶度最小,聚合度最低,溶解率最高。溶解过程中纤维素没有发生衍生化反应,溶解后得到的再生纤维素的相对结晶度和微晶尺寸变小,热稳定性降低。  相似文献   

4.
采用分子动力学模拟方法研究了纤维素分子在碱/脲水溶液体系中形成的包合物结构,研究了纤维素包合物的空间构型、氢键网格结构、纤维素分子与溶剂分子的相互作用以及碱金属阳离子对包合物稳定性的影响.在纤维素包合物结构中,碱金属阳离子和OH-主要吸附在纤维素分子链羟基的附近,与纤维素上的羟基氧直接接触形成稳定的吸附构型;尿素分子更倾向于在纤维素糖环面结构上聚集,可以与纤维素上的羟基氧和醚键氧相互作用形成氢键.通过对纤维素与溶剂分子间非键相互作用的研究发现,在纤维素羟基附近,羟基与金属阳离子之间的相互作用能最大,其次为与尿素分子、氢氧根离子的相互作用,最小的为与水分子的相互作用;在纤维素糖环面结构上,Na~+、OH~-、尿素、水与纤维素醚键氧的相互作用远小于与纤维素羟基的相互作用,纤维素上的醚键氧与尿素分子相互作用能最大.比较KOH/尿素和NaOH/尿素2种溶剂体系中碱金属阳离子与纤维素羟基形成的吸附构型的结合能,发现Na~+对纤维素分子内和分子间的氢键具有更强的破坏作用,NaOH/尿素溶剂体系中的分子与纤维素分子形成的包合物构型更稳定.  相似文献   

5.
壳聚糖在4种咪唑型离子液体中溶解性的研究   总被引:1,自引:0,他引:1  
研究、比较了壳聚糖在4种咪唑型离子液体氯化1-丁基-3-甲基咪唑([BMIM]Cl)、1-丁基-3-甲基咪唑醋酸盐([ BMIM] Ac)、1-乙基-3-甲基咪唑醋酸盐([EMIM] Ac)和氯化1-烯丙基-3-甲基咪唑([AMIM] Cl)中的溶解性,提出了可能的溶解机理,并利用红外光谱(FTIR)、热重分析(TGA...  相似文献   

6.
合成了新型离子液体氯化1-烯丙基-3-乙基-咪唑盐([AEIM]Cl), 并采用红外光谱和核磁共振测试技术对其化学结构进行了表征. 研究了微波加热条件下[AEIM]Cl对微晶纤维素(MCC)的溶解性能,考察了NaOH、微波和高压等3种预处理方式对微晶纤维素的结晶度、聚合度及溶解率的影响. 采用FT-IR、XRD、TGA和SEM测试技术分别对溶解后得到的再生纤维素的化学结构、晶型变化、热稳定性及表观形貌进行了分析. 结果表明,[AEIM]Cl是微晶纤维素的直接溶剂. 与原生纤维素相比,当选用15%的NaOH在高压釜中140 ℃条件下处理微晶纤维素时,处理过的纤维素结晶度由92.0%降至49.2%,聚合度由306降至153,溶解率从5.2%提高至28.8%. 溶解过程中纤维素没有发生衍生化反应,溶解后得到的再生纤维素晶型由原来的纤维素Ⅰ转变为纤维素Ⅱ,且微晶尺寸从4.92 nm降至1.76 nm,热分解温度从246.6 ℃降至183.0 ℃.  相似文献   

7.
纤维素在离子液体[AMMor]Cl/[AMIM]Cl混合溶剂中的溶解性能   总被引:6,自引:0,他引:6  
研究了纤维素在混配离子液体N-甲基-N-烯丙基吗啉氯盐[AMMor]Cl/3-甲基-1-烯丙基咪唑氯盐[AMIM]Cl中的溶解性能, 结果表明, [AMMor]Cl/[AMIM]Cl混配溶剂能有效溶解天然纤维素, 且在相同条件下, 溶解能力要优于离子液体[AMIM]Cl; 随着溶解温度的升高, 溶解时间大大缩短. 利用FTIR, XRD和TGA方法分析了再生纤维素的化学结构和热稳定性, 结果表明, 未经活化的纤维素可直接溶于[AMMor]Cl/[AMIM]Cl而不发生其它衍生化反应, 且天然纤维素在该溶剂体系中纤维素聚合度下降较小.  相似文献   

8.
咪唑类高铼酸盐催化微晶纤维素降解反应研究   总被引:2,自引:0,他引:2  
以咪唑类高铼酸盐为催化剂,以离子液体1-烯丙基-3-甲基咪唑氯盐([Amim]Cl)为溶剂降解微晶纤维素(MCC)。分别考察反应温度、反应时间、反应物浓度、催化剂用量和结构对纤维素降解反应的影响。结果表明,以5%1-(3-磺酸)丙基-3-甲基咪唑高铼酸盐([mim-(CH_2)_3SO_3H]ReO_4)为催化剂,在微波辅助加热条件下,0.1 g纤维素在2.0 g离子液体[Amim]Cl中于160℃降解30 min,还原糖收率(TRS)和葡萄糖收率最高可达89.6%和46.7%。研究还对咪唑类高铼酸催化纤维素降解反应的催化机理进行讨论,认为催化剂芳环阳离子、ReO-4中Re=O与纤维素分子中羟基的相互作用是促进纤维素降解的关键  相似文献   

9.
以1-甲基咪唑、3-氯-环氧丙烷和四氟硼酸为原料,在30℃和超声波辅助作用下,合成了羟基功能化离子液体1-(3-氯-2-羟基丙基)-3-甲基咪唑四氟硼酸盐(CHPMIM.BF4)和1,3-二-(1-甲基咪唑基)-2-丙醇四氟硼酸盐盐酸盐(DMIMP.BF4.Cl),该方法大大缩短了反应时间,避免了无机盐的生成。它们的电化学稳定性和离子电导率测定结果表明,CHPMIM.BF4和DMIMP.BF4.Cl具有较好的电化学稳定性,电化学稳定窗口分别为4.6 V和4.7 V;但前者的离子导电率要远远小于后者,25℃时它们的电导率分别为0.26mS/cm和9.86mS/cm。  相似文献   

10.
通过两步法合成了1,3-二甲基咪唑乙酸盐([C1mim][CH3COO])和1,3-二甲基咪唑羟基乙酸盐([C1mim][HOCH2COO])两种羧酸根阴离子型功能化离子液体。 研究了纤维素在这两种离子液体中的溶解性能。 结果表明,阴离子的结构对纤维素的溶解性能有明显影响,在120 ℃下,两种离子液体对纤维素的溶解度分别为19.7%和21.2%。 通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)以及热重分析(TG)等技术手段对再生纤维素的结构和热稳定性进行表征,表明两种离子液体均为纤维素的直接溶剂,纤维素在溶解及再生过程中晶体结构由I型转变为无定型结构,且热稳定性有所下降。 此外,研究发现溶解温度的提高和溶解时间的延长均会导致再生纤维素聚合度的降低。 所获得的研究结果为纤维素溶剂体系的开发具有指导意义。  相似文献   

11.
Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions was studied systematically. The dissolution behavior and solubility of cellulose were evaluated by using (13)C NMR, optical microscopy, wide-angle X-ray diffraction (WAXD), FT-IR spectroscopy, DSC, and viscometry. The experiment results revealed that cellulose having viscosity-average molecular weight ((overline) M eta) of 11.4 x 104 and 37.2 x 104 could be dissolved, respectively, in 7% NaOH/12% urea and 4.2% LiOH/12% urea aqueous solutions pre-cooled to -10 degrees C within 2 min, whereas all of them could not be dissolved in KOH/urea aqueous solution. The dissolution power of the solvent systems was in the order of LiOH/urea > NaOH/urea > KOH/urea aqueous solution. The results from DSC and (13)C NMR indicated that LiOH/urea and NaOH/urea aqueous solutions as non-derivatizing solvents broke the intra- and inter-molecular hydrogen bonding of cellulose and prevented the approach toward each other of the cellulose molecules, leading to the good dispersion of cellulose to form an actual solution.  相似文献   

12.
A new dissolution method, a two-step process, for cellulose in NaOH/urea aqueous system was investigated with 13C NMR, wide X-ray diffraction (WXRD), and solubility test. The two steps were as follows: (1) formation and swelling of a cellulose–NaOH complex and (2) dissolution of the cellulose–NaOH complex in aqueous urea solution. The dissolution mechanism could be described as strong interaction between cellulose and NaOH occurring in the aqueous system to disrupt the chain packing of original cellulose through the formation of new hydrogen bonds between cellulose and NaOH hydrates, and surrounding the cellulose–NaOH complex with urea hydrates to reduce the aggregation of the cellulose molecules. This leads to the improvement in solubility of the polymer and stability of the cellulose solutions. By using this two-step process, cellulose can be dissolved at 0–5 °C in contrast to the known process that requires −12 °C. Regenerated cellulose (RC) films with good mechanical properties and excellent optical transmittance were prepared successfully from the cellulose solution.  相似文献   

13.
The amphiphilicity of solvent systems is realized for adjusting the dissolution of natural cellulose by making use of tetra-butylammonium hydroxide (TBAH) as an example. TBAH aqueous solution is found to have an obvious effect on adjusting its amphiphilicity, along with a flexible concentration ranging from 40 to 60 wt% for dissolving cellulose. With a suitable amphiphilic property, cellulose can be dissolved by a TBAH aqueous system . The experimental results demonstrate that with the introduction of urea (more than 0.2:1, w:v) into a TBAH aqueous system, the dissolution process of cellulose can be dramatically promoted, leading to a transparent solution of cellulose. Herein, a complex solvent of TBAH/urea has been proposed for mild and effective dissolution of cellulose under ambient conditions. In the TBAH/urea complex solvent, the structure of the hybrid hydrate of TBAH and urea formed. Urea served as a hydrophobic contributor adjusting the amphiphilicity of the solvent system, allowing interfacial resistance between the amphiphilic crystal surfaces of the natural cellulose and solvent to be reduced. After that, the crystal of natural cellulose could be fully infiltrated and subsequently dissolved by the TBAH/urea aqueous solvent. The performances of the aqueous solvent and ambient temperature dissolution make aqueous TBAH/urea a potential and green solvent of cellulose for broad applications, such as composites, films or wet spinning of cellulose, in laboratories or industries.  相似文献   

14.
Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.  相似文献   

15.
Stable spruce cellulose suspensions were generated in NaOH/urea aqueous solutions and used to make thermally induced gels with various swelling ratios and compressive strengths. Wood cellulose cannot be easily dissolved in water or any common organic solvent due to its high molecular weight, which largely limits its applications. Spruce cellulose was hydrolyzed by diluted sulfuric acid of various concentrations and hydrolysis times. The dissolution of these partially degraded samples was investigated in a NaOH/urea aqueous solution system considered environmentally “green.” The effects of acid hydrolysis on the structure and properties of subsequent thermally induced gels were examined using scanning electron microscopy, swelling and re-swelling experiments, and mechanical testing. The molecular weight of spruce cellulose was significantly reduced by acid hydrolysis, whereas its crystallinity slightly increased because of the removal of amorphous regions. All samples could be partially dissolved in the NaOH/urea aqueous solution and formed stable suspensions. Hydrolyzed cellulose samples with lower molecular weight exhibited a higher solubility. Rheological experiments showed these cellulose suspensions could form gels easily upon heating. A porous network structure was observed in which dissolved cellulose was physically crosslinked upon heating and then regenerated to form a three-dimensional network, where the dispersed swollen cellulose fibers filled spaces to reinforce the structure. The swelling behavior and mechanical properties of these ‘matrix-filler’ gels could be controlled by varying the mild acid hydrolysis conditions, which adjusts their degree of solubility. This research provides several opportunities for manufacturing wood cellulose based materials.  相似文献   

16.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

17.
Cellulose (7% water) was thoroughly dispersed in various ionic liquids (IL) and the turbidity of the mixture was investigated to distinguish real dissolution from fine dispersion. The dissolving ability of 1-butyl-3-methylimidazolium chloride (BMIMCl know cellulose solvent) and 11 other commercial IL (not reported as cellulose solvents) was studied. From the latter, only 1,3-dimethylimidazolium dimethylphosphate (DMIMDMP) could dissolve cellulose. The influence of water content on the real dissolution of cellulose in these two IL was investigated. The maximum theoretical amount of dissolved anhydrous cellulose in the IL was determined by extrapolation methodology at different temperatures. For cellulose in BMIMCl, it was 8.75 g/100 g of IL at 95 °C. DMIMDMP could achieve real cellulose dissolution only in a practically anhydrous system (2.3 g/100 g of IL at 30 °C) but dissolution was physically limited by high viscosity.  相似文献   

18.
Aqueous 5 wt% LiOH/12 wt% urea solution pre-cooled to −12 °C has a more powerful ability to dissolve cellulose compared to that of NaOH/urea and NaOH/thiourea solution system. The influences of the cellulose concentration and coagulation temperature on the structure, pore size and mechanical properties of the cellulose films prepared from LiOH/urea system were investigated. The cellulose films exhibited good mechanical properties either at wet or dry state and their pore size and water permeability at wet state can be controlled by changing the cellulose concentration or coagulation temperature. With a decrease of the coagulation temperature, the mechanical properties and optical transmittance of the cellulose films enhanced, as a result of the formation of relative smaller pore size and denser structures. This work provided a promising way to prepare cellulose films with different pore sizes at wet state and good physical properties at dry state.  相似文献   

19.
Our NMR experiments show that chitin can dissolve well in aqueous KOH through a freeze-thawing process, and the dissolution power of the alkali solvent systems is in the order of KOH > NaOH > LiOH aqueous solution, which is totally contrary to that of cellulose in the alkali aqueous solution (i.e., LiOH > NaOH ? KOH). In this work, we systematically study the dissolution process in KOH and KOH/urea aqueous solutions. Chitin has good solubility (solubility ~80 %) in 8.4–25 wt% KOH aqueous solution at ?30 °C. The role of urea also has been investigated: unlike aqueous chitin-NaOH solutions, urea indeed enhances the solubility of chitin in KOH aqueous solutions, but the increased degree becomes unobtrusive with decreasing temperature and increasing dissolution time; the DA decline curves of chitin-KOH and chitin-KOH/urea aqueous solutions are nearly overlapping, indicating that the effect of the urea on the degree of acetylation of chitin in KOH aqueous solutions is small, similar to the NaOH/urea solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号