首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
芘修饰杯芳烃对钠离子的高选择性荧光传感   总被引:1,自引:0,他引:1  
经六步反应合成了新型杯[4]芳烃衍生物,其中杯[4]芳烃上缘的芘基作为荧光团,下缘的四个乙酯基作为离子载体,该化合物的结构经核磁和质谱鉴定.通过荧光光谱研究了主体化合物对碱、碱土金属离子的键合行为.结果表明主体化合物能够高选择性的识别钠离子,稳定常数为2190L·mol^-1.当加入钠离子时,芘基的excimer峰下降,同时monomer峰逐渐上升,而其它碱、碱土金属离子的加入没有导致主体化合物荧光光谱的变化.因此,该新型的杯[4]芳烃衍生物可以作为钠离子的荧光传感器.  相似文献   

2.
水溶性聚电解质—表面活性剂复合物的聚集行为   总被引:4,自引:1,他引:4  
聚电解质在溶液中与相反电荷的表面活性剂通过解电作用与疏水作用可形成聚电解质-表面活性剂复合物,依据反应条件生成的复事物可以是水溶性也可以是非水溶性的。水溶性的聚电解质-表面活性剂复合物由于有许多工业应用,因此近几十上来水溶性聚电解质-表面活性剂复合物的形成和结构已爱到人们的广泛重视。本文对水溶性聚电解质-表面活性剂复合物的聚集过程、聚集结构作了简要概述,此外对荧光光谱在这一领域的应用进行了重点介绍  相似文献   

3.
芘标记磺酸基聚电解质在水与DMSO中的荧光光谱   总被引:3,自引:0,他引:3  
合成了芘标记单体N-(芘基)甲基-2-甲基丙烯酰胺(PyMA),其与2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N,N-二甲基丙烯酰胺(DMAA)共聚,得到含PyMA摩尔分数为0.1%、AMPS摩尔分数FAMPS分别为0.033~0.896的芘标记磺酸基聚电解质.在DMSO和水中,FAMPS<0.449时芘标记聚电解质的荧光光谱与PyMA的荧光光谱基本相同;当FAMPS≥0.449时,芘的[0,1]和[0,3]跃迁的发射强度大幅度增强.芘标记的I1/I3值随聚电解质电荷密度增加逐渐减小,且随聚电解质浓度增加也减小,表明聚电解质体系中通过电离基团间吸引形成了分子主链的聚集.  相似文献   

4.
聚电解质与表面活性剂相互作用研究已有很多报道[1~4],由于在很多方面与生物膜中脂质体-蛋白质间相互作用相似,从而近年来备受关注[5~6].作为带电荷的水溶性高分子,聚电解质与带相反电荷的表面活性剂分子可以形成规整性非常好的聚电解质表面活性剂复合物.Antoniettti等报道聚丙烯酸与十六烷基三甲基溴化铵(CTAB)形成规整的介规相(Mesophase)聚电解质表面活性剂复合物结构[7],漆宗能等在同一体系既观察到了热致液晶也观察到了溶致液晶[8].在研究甲基丙烯酸3磺酸丙酯钾盐(SPMS)的苯乙烯(St)共聚物(P(SPM…  相似文献   

5.
聚电解质复合物 ( PEC)因其独特的物理化学性质而受到广泛关注 .对其研究主要集中在其结构及形成的影响因素 ,如聚电解质的分子量 [1,2 ] 、电荷密度、电荷强弱 [1,2 ] 及溶液离子强度 [3,4 ] ,而很少有关于聚电解质复合物溶解性的报道 [5,6 ] .一般认为组成 PEC的聚正离子 ( PC)和聚负离子 ( PA)之间 ,通过离子键形成网状交联结构而不溶于水及有机溶剂 .只有一种特殊的溶剂体系屏蔽溶剂可溶解此类复合物[7,8] .本文报道一类新的聚电解质复合物 :以二苯胺重氮树脂 DR为聚正离子 ,苯乙烯 -马来酸酐碱性水解物 ( PSMNa)为聚负离子的 P…  相似文献   

6.
利用平衡键合模型模拟了聚电解质同荧光探针离子键合过程的计量关系 ,以及添加盐竞争键合时的计量关系 .计算的结果能够描述荧光实验结果 .芘离子探针PyMeA·HCl的IE IM 随着探针浓度的增加 ,会出现一个极大值 ,此极大值能够定量地给出饱和键合计量关系 .当盐浓度和聚电解质荷电单元浓度相当时 ,盐离子和芘离子探针发生明显的竞争键合 ,部分离子探针被排挤入水相 ,实验的IE IM 随盐浓度增大急剧减小  相似文献   

7.
由于壳聚糖 ( CS)具有抗菌性、抗病毒性、良好的生物相容性、生物降解性以及容易与金属离子螯合等性质 ,被广泛用于重金属回收 [1~ 3] 、药物释放 [4~ 6] 、伤口覆盖[7,8] 、膜分离 [9,10 ] 、日用化工 [11] 等方面 .近年来 ,人们对壳聚糖以及它的化学改性作了大量的研究 [12~ 14 ] .其中通过化学改性形成壳聚糖聚电解质 ,可与带相反电荷的聚电解质通过静电自组装 ( ESA)获得超薄膜 [15~ 18] .本文尝试用壳聚糖( CS)与二苯胺 - 4-重氮树脂磺酸盐 ( DRS)以及二苯胺 - 4-重氮树脂 ( DR)通过 ESA的方法 ,形成具有感光性的超薄膜 .经 …  相似文献   

8.
聚电解质复合物 (Polyelectrolytecomplex)是指带有相反电荷的两种聚电解质之间通过库仑力而结合形成的一类特殊的高分子材料[1 ] .由于生物体内的很多反应以及生物化学合成过程都是通过高分子复合物进行的 ,因此对高分子间相互作用及其聚集体形成的研究受到了人们的极大重视 .目前研究得较多的体系是聚苯乙烯衍生物 ,如Ioplex 1 0 1即由聚苯乙烯磺酸钠和聚氯化乙烯基苄基三甲基铵反应而得[2 ,3] .本文报道了不同电荷密度及相对分子质量的聚苯乙烯 co 4 乙烯基吡啶的硫酸甲酯盐 ,与不同分子质量的聚丙烯酸钠…  相似文献   

9.
胡武洪 《化学学报》2009,67(21):2402-2406
采用密度泛函(DFT)方法在6-31g(d)水平下研究了聚吡咯和聚吡咯并[3,4-c]吡咯, 以及它们的单体和低聚物的电子结构. 对中心键的键长、电荷密度以及Weberg键级的研究表明, 随着主链聚合度的增加, 其共轭性增强. 对聚合物还进行了能带结构和态密度分析. 结果发现, 在3位聚合的并环化合物具有最优的导电性能, 其能隙仅有0.25 eV, 可以作为潜在的导电聚合物材料.  相似文献   

10.
黄艳琴  范曲立  黄维 《化学进展》2008,20(4):574-585
水溶性共轭聚电解质主要是指含离子型官能团侧链的共轭聚合物,可在水或其它极性有机溶剂中能够溶解。这类化合物把传统共轭聚合物的光电性质和聚电解质的水溶性特点结合在一起,显示出的一些独特性质,可在新一代光电器件制作和化学生物荧光传感器中获得多样的应用。本文总结了近10年来报道的水溶性共轭聚电解质的结构特点和合成方法,以及对不同化学或物理条件下光物理性质的研究,归纳了它们在新一代光电器件制作和荧光传感中的应用,并在此基础上提出了水溶性共轭聚电解质研究中尚待解决的问题,并展望了水溶性共轭聚电解质的应用前景。  相似文献   

11.
A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film.  相似文献   

12.
A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.  相似文献   

13.
Diffusive transport within complex environments is a critical piece of the chemistry occurring in such diverse membrane systems as proton exchange and bilayer lipid membranes. In the present study, fluorescence correlation spectroscopy was used to evaluate diffusive charge transport within a strong polyelectrolyte polymer brush. The fluorescent cation rhodamine-6G was used as a counterion probe molecule, and the strong polyelectrolyte poly(styrene sulfonate) was the polymer brush. Such strong polyelectrolyte brushes show promise for charge storage applications, and thus it is important to understand and tune their transport efficiencies. The polymer brush demonstrated preferential solvation of the probe counterion as compared to solvation by the aqueous solvent phase. Additionally, diffusion within the polymer brush was strongly inhibited, as evidenced by a decrease in diffusion constant of 4 orders of magnitude. It also proved possible to tune the transport characteristics by controlling the solvent pH, and thus the ionic strength of the solvent. The diffusion characteristics within the charged brush system depend on the brush density as well as the effective interaction potential between the probe ions and the brush. In response to changes in ionic strength of the solution, it was found that these two properties act in opposition to each other within this strong polyelectrolyte polymer brush environment. A stochastic random walk model was developed to simulate interaction of a diffusing charged particle with a periodic potential, to show the response of characteristic diffusion times to electrostatic field strengths. The combined results of the experiments and simulations demonstrate that responsive diffusion characteristics in this brush system are dominated by changes in Coulombic interactions rather than changes in brush density. More generally, these results support the use of FCS to evaluate local charge transport properties within polyelectrolyte brush systems, and demonstrate that the technique shows promise in the development of novel polyelectrolyte films for charge storage/transport materials.  相似文献   

14.
Tensile properties of microcoupons of polyelectrolyte complex, formed by the multilayering method, were determined using a micromechanical analysis system. The degree of internal ion-pair ("electrostatic") cross-linking was reversibly controlled by exposure to salt solution of varying concentration, which "doped" counterions into the films, breaking polymer/polymer ion pairs in the process. Linear stress-strain behavior was observed for a poly(styrene sulfonate)/poly(diallyldimethylammonium) multilayer up to 2% deformation. The dependence of modulus on cross-link density could be rationalized well by classical theories of rubber elasticity, including some insight on the topology of polyelectrolyte complexes.  相似文献   

15.
Previous studies on the dilute-solution behavior of sulfonated ionomers have shown these polymers to exhibit unusual viscosity behavior in mixed solvents of low polarity. These results have been interpreted as arising from specific solvation effects by the solvents with the metal sulfonate groups which persist as ion pairs. The consequences of ion pair interactions and their solvation are exceptional thickening behavior at low polymer levels as compared to unfunctionalized polymers, and anomolous solution viscosities with varying temperature. These studies have now been extended to single-component solvents which traverse a range of polarities. Using the sodium salt of lightly sulfonated polystyrene (S-PS) as a model system, the authors found the solution behavior in low-polarity solvents (tetrahydrofuran) to be consistent with that observed previously for mixed solvents; ion pair interactions predominated. However, in polar solvents such as dimethyl sulfoxide or dimethyl formamide, these polymers behave as classic polyelectrolytes even at sulfonate levels below 2 mol %. The behavior of the S-PS acids is similar to that observed for the metal salts. To a first approximation these two behaviors, ion pair association and polyelectrolyte behavior, are dependent on solvent polarity. In some cases it is possible to induce polyelectrolyte behavior in a S-PS/solvent combination exhibiting ion pair interactions by the addition of very low levels of a polar cosolvent, such as water. These results again demonstrate the selectivity of the solvent-sulfonate interactions.  相似文献   

16.
In polymer films carrying an excess of fixed charge the electrostatic penalty to bring ions of same charge from the bathing electrolyte into the film sets a membrane potential (Donnan Potential) across the film-electrolyte interface. This potential is responsible for the ionic permselectivity observed in polyelectrolyte membranes. We have used electrochemical measurements to probe the dependence of the Donnan potential on the acid-base equilibrium in layer-by-layer self-assembled polyelectrolyte multilayers. The voltammperogram peak position of the Os(III)/Os(II) couple in self-assembled polyelectrolyte multilayers comprised of poly(allylamine) derivatized with Os(bpy)(2)PyCl+ and poly(vinylsulfonate) was recorded in solutions of increasing ionic strength for different assembly and testing solution pH. Protonation-deprotonation of the weak redox poly(allylamine) changes the fixed charge population in the as prepared (intrinsic) self-assembled redox polyelectrolyte multilayers. For films assembled in solutions of pH higher than the test solution pH, the Donnan plots (E(app) vs log C) exhibit a negative slope (anionic exchanger) while for films assembled at lower pH than that of the test solution positive slopes (cationic exchanger) are apparent. The ion exchange mechanism has been supported by complementary electrochemical quartz crystal microbalance. X-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy experiments demonstrated that the as prepared films have a memory effect on their protonation state during assembly, which leads to the observed dependence of the Donnan potential on the adsorption pH.  相似文献   

17.
The objective of this research is to develop a relationship between salt type and concentration to poly(2-methacyloyloxyethyl phosphorylcholine) (PMPC) zwitterionic polymer solution behaviors. In particular, polyelectrolyte hydrodynamic volumes were analyzed through size exclusion chromatography in relation to the addition of various salts at various concentrations. The salt properties examined were salt concentration, ionic strength, solution pH, cation type/size, anion type/size, valency, and configuration. It was found that the effect of ion properties is related to mechanisms associated with the geometry of the polyelectrolyte. The negative charge group of the polyelectrolyte situated closer to the backbone (inside) is less important to the change in hydrodynamic volume than the positive charge group situated at the end of the side chain (outside). The extensive amount of data generated in this study provides a strong background for possible accurate formulation of a theory based on the salt effect on PMPC polyelectrolyte solution behavior.  相似文献   

18.
Alternating adsorption of polyanions and polycations on porous supports provides a convenient way to prepare ion-selective nanofiltration membranes. This work examines optimization of ultrathin, multilayer polyelectrolyte films for monovalent/divalent cation separations relevant to water softening. Membranes composed of five bilayers of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) on porous alumina supports allow a solution flux of 0.85 m3/(m2 day) at 4.8 bar, and exhibit 95% rejection of MgCl2 along with a Na+/Mg2+ selectivity of 22. Similar results were obtained in Na+/Ca2+ separations. PSS/poly(diallyl-dimethylammonium chloride) (PDADMAC) films permit higher fluxes than PSS/PAH systems due to the higher swelling of films containing PDADMAC, but the Mg2+ rejection by PSS/PDADMAC membranes is less than 45%. However, capping PSS/PDADMAC films with a bilayer of PSS/PAH yields Mg2+ rejections and Na+/Mg2+ selectivities that are typical of pure PSS/PAH membranes. Separation performance can be optimized through control over deposition conditions (pH and supporting electrolyte concentration) and the charge of the outer layer since Donnan exclusion is a major factor in monovalent/divalent cation selectivity. Streaming potential measurements demonstrate that the magnitude of positive surface charge increases with increasing concentrations of Mg2+ in solution or when the outer polycation layer is deposited from a solution of high ionic strength.  相似文献   

19.
The placement of ionic groups within the molecular structure of a polymer produces marked modification in physical properties. A large number of studies have been performed on these ion-containing polymers, but few have focused on the effects of anion–cation interactions (i.e., counterion binding or ionization) on hydrodynamic volume, especially as the molecular structure of the solvent and nature of counterion are varied. In this study changes in hydrodynamic volume are followed through reduced viscosity measurements as a function of the abovementioned molecular parameters. The dilute solution properties of various polyelectrolytes that contain sulfonate and carboxylate groups were investigated as a function of the counterion structure, charge density, molecular weight, and solvent structure. The polymeric materials were selected because of their specific chemical structure and physical properties. In the first instance a (2-acrylamide-2 methylpropanesulfonic acid)-acrylamide-sodium vinyl sulfonate terpolymer was synthesized and subsequently neutralized with a series of bases. Viscometric measurements on these materials indicate that the nature of the cation affects the ability of the polyelectrolyte to expand its hydrodynamic volume at low polymer levels. The magnitude of the molecular expansion is shown to be due in part to the ability of the counterion to dissociate from the backbone chain, which, in turn, is directly related to the solvent structure. The changes in solution behaviour of these inomers lend support for the existence of ion pairs (i.e., site binding) and ionized moieties on the polymer chains. Measurements performed in a variety of solvent systems further confirm this interpretation. In addition, and acrylamide-sodium vinyl sulfonate copolymer was partially hydrolyzed with sodium hydroxide to study the effect of varying the charge density at a constant degree of polymerization and counterion structure. The results show that the charge density has a significant effect on the magnitude of the reduced viscosity and dilute solution behaviour. These observations, made in aqueous and nonaqueous solvents, are related to the interrelation of hydrodynamic volume, counterion concentration, and site binding. Again the controlling factor is the degree of site binding of the counterion onto the polymer backbone. Finally, we observe that the increased hydrodynamic volume affects viscosity behavior beyond the polyelectrolyte effect regime. If the average charge density on the macromolecule is relative high and/or the molecular weight is large (≥ 106) sufficient intermolecular interactions will occur to produce rapid changes in reduced viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号