首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
魏怡  王利娟  闫继  沙鸥  唐致远  马莉 《物理化学学报》2011,27(11):2587-2592
采用液相法合成了Li2MnSiO4/C复合正极材料,并研究了不同焙烧温度对材料的结构、形貌和电化学性能的影响.利用热重(TG)分析了材料前驱体的热行为,确定了合成Li2MnSiO4/C复合正极材料的焙烧温度范围为600-800℃.X射线衍射(XRD)测试结果表明,不同温度下合成的样品材料均具有正交结构,且空间群为Pmn21,同时利用扫描电子显微镜(SEM)对所得样品材料的微观形貌及颗粒大小进行了表征.将所得Li2MnSiO4/C复合正极材料组装成扣式电池,并在不同的电流密度下进行充放电测试,结果表明:700℃合成的样品材料电化学性能最佳,具有较高的库仑效率及很好的循环稳定性.  相似文献   

2.
杜柯  周伟瑛  胡国荣  彭忠东  蒋庆来 《化学学报》2010,68(14):1391-1398
以LiOH•H2O, Ni2O3, Co3O4和MnO2为原料, 经过机械活化后在空气气氛下经高温烧结, 合成了锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征. 结果表明, 900 ℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料, 并具有良好的电化学性能, 在室温下以60 mA/g的电流充放电, 首次放电比容量可达到248.2 mAh/g, 循环50次后放电比容量为239.4 mAh/g, 容量保持率为96.45%. 测试了该材料的高低温循环性能.  相似文献   

3.
Li2MnO3正极材料具有较高的理论容量(459 mAh·g -1),不仅安全无毒还能够大大降低电池的制造成本,从而受到越来越多的关注. 然而,较低的首圈库仑效率和较差的循环性能妨碍了其在锂电池中的实际应用. 在此,作者研究了MgF2涂层对Li2MnO3正极材料的电化学性能. 结果表明,MgF2涂层诱导部分层状Li2MnO3向尖晶石相转化,从而降低了首圈不可逆容量,提高库仑效率. 重量比为0.5%、1.0%和2.0%的MgF2涂层电极的初始库仑效率分别为70.1%、77.5%和84.9%,而原始电极仅为57.7%. 充放电曲线表明,1.0wt.%MgF2涂层改性的Li2MnO3具有最高的充放电容量和最佳的循环稳定性. 40个循环后1.0wt.%MgF2涂层样品的容量保持率为81%,远高于原始样品的容量保持率(53.6%). 电化学阻抗谱结果表明MgF2涂层减少了不利成分的快速沉积,并改善了电极的循环稳定性.  相似文献   

4.
采用溶胶-凝胶法并辅以微波热处理合成了Na掺杂改性的Li2-xNaxMnSiO4/C(x=0, 0.05, 0.09, 0.13)复合正极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 恒电流充放电测试、 循环伏安(CV)和交流阻抗(EIS)测试等对材料进行了表征. 结果表明, 经微波辐射后得到的电极材料具有Pmn21型空间结构, 其碳层分布均匀, 粒径细小均匀, 约为15~30 nm. 在微波辅助原位碳包覆和Na掺杂共同作用下, 复合材料的电荷转移电阻明显降低, Li+扩散速率增大, 展现出优良的电化学性能. 在0.1C倍率下Li1.91Na0.09MnSiO4/C样品首次放电比容量为211 mA∙h/g, 50次循环后仍保持80 mA∙h/g的可逆容量; 0.5C和2.0C倍率下的放电比容量分别为106和53 mA∙h/g, 大电流下的可逆容量明显提高.  相似文献   

5.
采用高能球磨法通过不同球磨时间制备xLiF-(Ni_(1/6)Co_(1/6)Mn_(4/6))_3O_4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射、扫描电镜、电化学性能测试和X-射线电子能谱对所制备的正极材料性能进行表征。结果表明,球磨24h的产物的放电比容量最高,为157. 3mAh·g~(-1)。此外,正极材料添加石墨烯能改善其电化学性能,当石墨烯复合量为20%,在室温、0. 05C(1C=250mAh·g~(-1))、1. 5~4. 8V下,材料首圈的放电比容量为235mAh·g~(-1),相较于无石墨烯的材料,在1C和5C倍率下,放电比容量分别提高到151和114 m Ah·g~(-1)。文中还分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

6.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

7.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

8.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

9.
李林  王昊  郭志豪  彭工厂 《合成化学》2022,30(9):704-708
本研究以硫酸锰、硫酸钻、硫酸镍、碳酸钠和氟化铵为原料,通过共沉淀法结合高温煅烧法合成氟掺杂富锂锰基正极材料 Li1.2 Mn0.54 Ni0.13 Co0.13O1.92 F0.08 。通过扫描电子显微镜(SEM)对样品形貌进行观察,利用x-射线衍射(XRD)技术表征晶体结构,利用x-射线能谱仪(EDS)对样品元素分布进行测试,对材料进行恒电流充放电并研究其电化学性能。结果表明:氟掺杂后的富锂锰基正极材料微观形貌没有发生明显变化并保持层状结构;氟原位掺杂的样品在电流密度为1C时循环65 圈后,放电比容量为179 mAh/g,容量保持率为91.89%,高于未掺杂的样品87.5% ,有效改善了材料的循环性能。  相似文献   

10.
采用固相反应法在空气气氛下合成了同时掺杂Co阳离子和F阴离子的镍系正极材料Li1+δNi1-xCoxO2-yFy(0≤δ≤0.2, 0≤x≤0.5, 0≤y≤0.1),考察了不同来源的镍源为原料对目标材料性能的影响,并采用XRD, SEM, TEM, BET,激光粒度分布,电化学性能测试等手段对该材料进行了表征.结果表明,在正极材料LiNiO2中同时掺杂Co阳离子和F阴离子后合成的Li1+δNi1-xCoxO2-yFy镍系正极材料具有完整的层状结构、均一的表面形貌、较好的粒径分布和良好的电化学性能.在20~25℃,充放电电流为0.15~0.25 mA,截止电压为4.25~2.70 V,充放电速率为0.2~0.5 C,电流密度为0.2~0.5 mA/cm2条件下,LiNi0.8Co0.2O1.95F0.05的首次充放电容量分别达到165.70 mAh/g和146.10 mAh/g,而且循环稳定性能良好,在恒流充放电循环50次后,其可逆放电容量大于140 mAh/g.这主要归因于具有较高电负性的F阴离子的掺入改善了正极材料的结够稳定性和Co与F离子的协同作用.该正极材料初步显示了实际应用的可能性.  相似文献   

11.
采用高能球磨法通过不同球磨时间合成 xLiF-(Ni1/6Co1/6Mn4/6)3O4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射(XRD)、扫描电镜(SEM)、电化学性能测试和X-射线电子能谱(XPS)对xLiF-(Ni1/6Co1/6Mn4/6)3O4正极材料性能进行表征。研究表明,球磨24小时产物的放电容量最高,为157.3 mAh g-1。并且LiF与(Ni1/6Co1/6Mn4/6)3O4比例为1.5:1(x=1.5)时放电容量最高。此外正极材料添加石墨烯能改善材料的电化学性能,石墨烯复合量为20%,在室温、0.05 C(1C=250 mAh g-1)、1.5 -4.8 V下,材料首圈的放电比容量为235 mA hg -1,相较于无石墨烯的材料,在1 C和5 C倍率下,放电比容量分别为151和114 mAh g-1。同时分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

12.
利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.  相似文献   

13.
首次采用溶胶-凝胶法制备Na2MnSiO4/C纳米复合正极材料. X射线衍射(XRD)和Rietveld结构精修结果表明,合成的Na2MnSiO4材料为单斜晶系、Pn空间群. 红外光谱(FTIR)结果证实材料中不含有Na2SiO3和SiO2等杂质. 电化学测试结果表明,该材料在1 mol·L-1 NaClO4/PC电解液中,电流密度为14 mA·g-1、电压范围为1.5 ~4.2 V(vs. Na+/Na)测试条件下,其首次可逆放电比容量高达113 mAh·g-1.  相似文献   

14.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

15.
谢勇  钟贵明  龚正良  杨勇 《电化学》2015,21(2):123-129
采用溶胶凝胶及高能球磨制得Li3Fe2(PO4)3/C材料,利用多种物理及其电化学技术观察材料形貌,表征材料结构及电化学性能,用电化学原位XAFS等初步研究Li3Fe2(PO4)3/C超理论容量电化学反应机理. 结果显示,Li3Fe2(PO4)3/C的结构为单斜晶系,空间群P21/n. 2.0 ~ 4.0 V电位区间,10 mAh·g-1电流密度,Li3Fe2(PO4)3/C电极的首周期放电比容量为129 mAh·g-1,达到其理论容量. 若电位区间拓宽至2.0 ~ 4.95 V,其首周期放电比容量高达165 mAh·g-1,超出理论的“额外”容量30%. 电化学原位XAFS测试未观察到明显的Fe3+/Fe4+氧化还原对参与电化学反应,初步推测“额外”容量可能来自于该复合材料的高浓度表面缺陷.  相似文献   

16.
介绍了一种先冷冻干燥后固相烧结制备正极材料Li2FeP2O7的方法. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)对材料的组成和形态进行表征, 并通过循环伏安曲线(CV)和电化学阻抗谱(EIS)研究了Li2FeP2O7材料的电化学性能. 研究发现, 合成Li2FeP2O7的最佳温度为590 ℃, 此温度下反应较完全且产物杂质较少, 1.6C倍率下的放电比容量达到55 mA·h·g?1, 明显高于其它温度下合成样品的放电比容量. 该温度下合成的Li2FeP2O7还具有低阻抗和较大的交换电流密度, 说明这种合成方式有利于提高锂离子在Li2FeP2O7中的扩散.  相似文献   

17.
采用溶胶-凝胶法制备了氮掺杂的硅酸亚铁锂正极材料.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、充放电测试和交流阻抗测试(EIS)等对材料的结构及电化学性能进行了表征.结果表明,N元素已掺杂到Li2FeSiO4材料晶格中,样品具有较小的颗粒尺寸和优异的动力学性能,表现出较好的充放电比容量和倍率特性,首次放电比容量为130 mA·h/g,循环50次后比容量仍可达到124 mA·h/g,容量保持率高达95%.  相似文献   

18.
以乙酸盐为原料,柠檬酸为络合剂,通过溶胶-凝胶的方法制备富锂阴极材料Li2MnO3,选用草酸亚锡(SnC2O4)为锡源,用Sn 4+代替Mn 4+,获得不同掺杂量的材料. 适当含量的Sn 4+掺杂可以提高材料的放电比容量,在低电流下获得256.3 mAh·g -1的高放电比容量,但由于Sn 4+离子半径过大,不能起到稳定结构的作用,材料的倍率性能较差. 在此基础上,选用氯化亚锡(SnCl2)进行掺杂改性,在材料中同时引入Sn 4+和Cl -掺杂,获得了层状结构更完整的粉末样品. 通过共掺杂改性的阴极材料可以在20 mA·g -1的电流密度,经过80圈的循环仍然保持153 mAh·g -1的放电比容量,且此时还未出现衰减现象,库仑效率保持在96%以上;在400 mA·g -1的电流密度下提供的比容量可高达116 mAh·g -1,是未掺杂样品的2倍左右.  相似文献   

19.
刘永梅  郭永榔 《应用化学》2009,26(10):1236-1240
以Li2CO3和NH4VO3为原料,在不同条件下合成了锂离子电池正极材料用Li1+xV3O8。研究了反应物的分散条件和煅烧温度对产物晶型结构、形貌及电化学性能的影响。 XRD、IR和SEM结果表明,用超声波在无水乙醇中分散反应物得到的前驱体于550 ℃下煅烧,所得产物Li1+xV3O8结晶度低、粒径小、形貌均匀。 充放电、循环伏安等结果表明,该材料在充放电过程中极化低、嵌脱锂位置多、循环稳定性好。 在0.5 C放电条件下,第2次循环放电容量达到268 mA·h/g,100次循环后容量仍保持210 mA·h/g以上。  相似文献   

20.
王琼  Adel Attia  施志聪  杨勇 《电化学》2008,14(1):30-33
选用合适模板剂由溶胶凝胶法合成高度有序介孔结构的磷酸钛正极材料.研究煅烧温度对材料孔结构及材料的电化学性能的影响,合成样品的结构形貌和比表面分别用XRD、BET、TEM及元素分析仪表征.充放电测试结果表明,该介孔结构正极材料表现出优越的电化学性能,以150 mA/g充放电,首次放电容量高达94 mAh/g,而不含模板剂无孔结构的材料放电容量仅37 mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号