首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李峰  李瑛琇  朱果逸 《应用化学》2002,19(7):705-707
β-D-葡萄糖的检测是临床化学的常规分析项目 .化学发光分析法测定葡萄糖具有线性范围宽、灵敏度高等优点[1~ 3] .我们曾研究了鲁米诺 ( L uminol) -KIO4 -H2 O2 化学发光反应体系[4 ] ,发现 H2 O2 浓度在 2 .0× 1 0 - 7~ 6.0× 1 0 - 4mol/L范围内与发光强度有良好的线性关系 .本文将生成 H2 O2 的葡萄糖 -葡萄糖氧化酶 ( GOD)的酶促反应与鲁米诺 -KIO4 -H2 O2 的化学发光反应相偶合 ,结合流动注射技术 ,建立了一种流动注射化学发光测定葡萄糖的新方法 .方法的线性范围为 0 .6~ 1 1 0 mg/L ,相关系数为 0 .9997,检出限为 0 .0…  相似文献   

2.
刘海生  刘伟  章竹君 《分析化学》2005,33(6):811-813
设计了一种将微注样阀和发光试剂均集成化的微流动注射化学发光芯片。利用luminolK3Fe(CN)6H2O2化学发光体系,研究了这种芯片的分析特性。该芯片测定H2O2的线性范围为2×10-5~8×10-9mol/L;检出限为3.6×10-9mol/L;相对标准偏差RSD=4.4%(c=1×10-6mol/L,n=11)。与常规的流动注射化学发光分析法相比,该芯片具有简单、快速、灵敏度高、耗样量少等特点,并结合酶促反应成功地用于人体血清中葡萄糖的测定。  相似文献   

3.
血红蛋白与葡萄糖氧化酶偶联荧光法测定葡萄糖   总被引:9,自引:1,他引:9  
利用血红蛋白(Hb)作为辣根过氧化物酶(HRP)的模拟酶,催化H2O2与对甲基酚的荧光反应.并将该反应与葡萄糖氧化酶(GOD)催化氧化葡萄糖的反应偶联,建立了测定葡萄糖的荧光分析法.方法的线性范围为0.0~5.0×10-5mol/L葡萄糖.检测限为6.5×10-8mol/L.用于测定人血清中葡萄糖的含量,获得了满意的结果.  相似文献   

4.
利用蛋壳膜固定酶和静电作用组装纳米银膜,建立了一种新型的光度法检测微量葡萄糖.采用共价交联法在蛋壳膜上固定葡萄糖氧化酶.酶促反应产生的H_2O_2氧化纳米银导致纳米银膜吸光度减小,日光强度的变化值与葡萄糖浓度有关,据此实现了对葡萄糖的检测.该方法检测快速,线性范围为6.0×10~(-5)~66.0×10~(-5)mol/L(r=0.999 7,n=11),检出限(S/N=3)为1.8×10~(-5) mol/L.方法成功用于临床血清样品中葡萄糖含量的检测.  相似文献   

5.
葡萄糖在浓盐酸中降解后,其产物羟甲糖醛可与Ce(Ⅵ)反应产生化学发光,罗丹明6G对该反应有较强的增敏作用。据此,建立了流动注射化学发光测定葡萄糖的新方法。该法的线性范围为0.2-90mg/L,检出限为0.08mg/L,相对标准偏差(n=11,ρ=10.0mg/L)为1.0%。方法用于血清中葡萄糖含量的测定,结果与标准方法一致,回收率为96%-106%。  相似文献   

6.
基于固定化纳米金增强化学发光双酶传感器测定葡萄糖   总被引:1,自引:0,他引:1  
林洁华  张慧  张书圣 《中国科学B辑》2008,38(11):1011-1017
研制了一种新型流动注射化学发光(CL)双酶传感器,用于葡萄糖的检测.该传感器将掺杂金纳米粒子(GNPs)的壳聚糖膜包覆在硅烷化试剂预处理的玻璃微珠上,用于吸附固定葡萄糖氧化酶(GOD)和辣根过氧化物酶(HRP).葡萄糖在GOD的催化下发生氧化反应生成H2O2,生成的H2O2在HRP的催化作用下与鲁米诺发生反应,并产生化学发光信号.实验表明,壳聚糖中掺杂的GNPs不仅能够有效的吸附酶分子并保持其生物活性,还对Luminol-H2O2-HRP化学发光体系具有增敏作用.通过化学发光光谱和紫外光谱表征,详细研究了固定化GNPs增强Luminol—H2O2-HRP体系的化学发光机理.在优化的实验条件下,该传感器对葡萄糖检测的线性范围为0.01~6.0mmol/L,检测限为5.0μmol/L(3σ).将所建立的方法用于临床血清样品中葡萄糖含量的测定,获得了满意的结果.  相似文献   

7.
采用溶胶凝胶技术分别固定了胆固醇脂酶和胆固醇氧化酶,制成固定化酶柱;人体血清中胆固醇脂在胆固醇脂酶的催化作用下生成胆固醇,胆固醇在胆固醇氧化酶的催化作用下被氧化产生H2O2,将其与鲁米诺发生耦合的化学发光反应,在模拟酶血红蛋白的催化作用下产生较强的化学发光。结合流动注射技术,建立了溶胶凝胶固定化酶流动注射化学发光法测定胆固醇的新方法。实验发现,发光强度与胆固醇的浓度在一定范围内呈良好的线性关系,总胆固醇的线性范围为1.01×10-6~2.02×10-4mol/L(r=0.9975);检出限为7.5×10-7mol/L;游离胆固醇的线性范围为5.0×10-8~2.18×10-5mol/L(r=0.9991);检出限为5.0×10-9mol/L。用生化分析仪(东芝TBA-120FR)与本方法进行对照,两种方法无显著性差异。本方法已应用于临床血清样品中胆固醇的检测。  相似文献   

8.
金纳米簇(Au NCs)具有拟过氧化物酶活性,能催化鲁米诺(Luminol)与H_2O_2反应,产生增强的化学发光信号。不同于其它纳米微粒催化的Luminol-H_2O_2化学发光反应,Au NCs催化得到的是慢化学发光信号,且其信号能在10min内保持稳定。基于此反应,本文发展了简单、方便的化学发光测定H_2O_2的新方法。在优化的实验条件下,测定H_2O_2的检测限为10μmol/L。将此方法应用于葡萄糖的检测,其线性范围为10~1 000μmol/L,检测限为10μmol/L。目前一些重要的生物分子,如尿酸和乳酸等均能与相关酶反应生成H_2O_2,本方法也能进一步拓宽至这些生物分子的检测。  相似文献   

9.
将包被有单克隆抗体的两个透明微型检测池串联在流动注射分析装置上,利用移动式微型检测池建立了一种能同时检测甲胎蛋白和癌胚抗原的流动注射化学发光免疫分析方法,为提高分析效率提供了一种有效途径.样品抗原和辣根过氧化物酶标记的相应抗体分别导入微管进行孵育,形成三明治式免疫夹心结构.在注入鲁米诺和H2O2后, 两微型检测池中分别形成较稳定的酶催化化学发光体系.通过切换检测池,使两个透明微型检测池中发生的酶促增强化学发光反应相继得到检测,从而实现两种待测物的同时检测.考察了一系列影响化学发光检测的参数,如免疫反应时间、鲁米诺和H2O2的浓度及反应介质的pH值.在最佳实验条件下,甲胎蛋白和癌胚抗原的检测线性范围分别为1.25~50.00 μg/L和1.25~40.00 μg/L,检出限分别为1.06和1.00 μg/L.对人血清实际样品进行了检测,取得了满意的结果.  相似文献   

10.
制备了一种具有过氧化物酶活性的类普鲁士蓝/氧化石墨烯复合纳米材料(CoFe(Ⅲ)PBA/GO)。将具有过氧化物酶活性的CoFe(Ⅲ)PBA/GO和化学发光法相结合,构建了一种用于检测H2O2和抗坏血酸(AA)的化学发光分析法。CoFe(Ⅲ)PBA/GO催化H2O2产生的O2·-,·OH,1O2自由基氧化Luminol会产生很强的化学发光信号,通过检测化学发光强度可以实现对H2O2的检测。该方法检测H2O2的线性范围为0~0.8μmol/L,检测限为11 nmol/L。利用AA作为活性氧消除剂可以抑制化学发光反应的特点,实现了AA的检测。该方法测定AA的线性范围为0.02~0.8μmol/L,检测限为20 nmol/L。方法已应用于H2O2消毒水中H2O2和维生素C片中抗坏血酸的检测。  相似文献   

11.
本文将葡萄糖氧化酶包埋在聚丙烯酰胺凝胶中使之固定化,并将其装柱接入流动注射系统中,用流动注射化学发光法测定葡萄糖通过固定化酶柱后转化生成的过氧化氢,从而测定葡萄糖含量。该法灵敏、快速、准确、酶柱性能稳定,可反复使用。葡萄糖的检测下限小于0.1mg/L,经人体血糖测定和加标准回收实验结果均为满意。  相似文献   

12.
尿中磺酸化胆汁酸的流动注射固定化酶化学发光法   总被引:2,自引:0,他引:2  
高秀峰  李永生 《分析化学》2001,29(10):1154-1156
肝胆系统有疾患,会导致尿中磺酸化胆汁酸浓度的增加。根据尿中磺酸化胆汁酸的浓度可以判断肝脏机能是否正常。基于流动注射分析原理,利用化学发光法和固定化酶反应,建立了一个新的尿中磺酸化胆汁酸的临床快速分析法。进样量为20μL;分析速度30样/h;检出限为0.1μmol/L;RSD小于2.2%;线性范围在0.1-12μmol/L之内。  相似文献   

13.
高锰酸钾-甲醛-尿酸化学发光体系的研究   总被引:1,自引:0,他引:1  
刘梅  何云华  吕九如 《分析化学》2005,33(4):535-537
在甲醛存在下,高锰酸钾与尿酸能够发生化学发光反应,产生很强的化学发光。据此采用流动注射技术,建立了一种利用高锰酸钾甲醛尿酸化学发光体系测定尿酸的化学发光分析法。方法的检出限为6×10-6 g/L;相对标准偏差为1. 8% (4. 0×10-4 g/L尿酸,n=11 );线性范围为2. 0×10-5 ~5. 0×10-3g/L。本法用于人体尿液中尿酸的测定,结果令人满意。并探讨了反应机理。  相似文献   

14.
唾液中葡萄糖含量与血糖水平密切相关,可通过非侵入式采集、测定实现血糖的持续、准确监控。但唾液中葡萄糖含量极低,干扰组分众多,对分析方法的选择性、灵敏度、样品用量、响应时间等都提出更严苛的要求。本文通过戊二醛交联法在氨基化磁性微球上固定葡萄糖氧化酶(GOx)和辣根过氧化物酶(HRP),利用微流控磁载技术将磁性微球富集在微通道中,为GOx/HRP酶级联反应提供限域环境,基于此构建了高灵敏荧光增强的葡萄糖传感器,实现了唾液样品中葡萄糖含量的测定。在最优实验条件下,葡萄糖在0.01~100μmol/L浓度范围内与荧光强度有良好的线性关系,检出限为3.2 nmol/L,加标回收率为95.3%~103.1%,相对标准偏差小于4.5%。本方法样品用量少、响应时间短、选择性高、检出限低、线性范围宽,适用于人体唾液中葡萄糖含量的快速测定。  相似文献   

15.
实验发现Ca2+在铁氰化钾-钙黄绿素化学发光反应体系中的后化学发光反应.优化了反应条件,建立了一种利用后化学发光反应测定Ca2+的流动注射化学发光分析法.方法的线性范围为1.0×10-6~1.0×10-4 g/mL,检出限为3.0×10-7 g/mL, 相对标准偏差为1.8%(2.0×10-5 g/mL Ca2+,n=11).此法已用于自来水中Ca2+含量的测定,结果与标准方法测定值一致.  相似文献   

16.
铁氰化钾-钙黄绿素体系后化学发光反应测定氨基比林   总被引:1,自引:0,他引:1  
何云华  吕九如 《分析化学》2007,35(4):564-566
研究发现,氨基比林在铁氰化钾-钙黄绿素化学发光反应体系中的后化学发光反应。优化了反应条件,建立了一种利用后化学发光反应测定氨基比林的流动注射化学发光方法。方法的检出限为20μg/L;相对标准偏差为2.0%(2.0mg/L氨基比林,n=11);线性范围为1.0×10-4~1.0×10-2g/L。此法已用于复方氨林巴比妥注射液中氨基比林含量的测定,结果与药品标准方法测定值一致。  相似文献   

17.
化学发光酶免疫法测定游离三碘甲腺原氨酸   总被引:4,自引:0,他引:4  
以辣根过氧化物酶为三碘甲腺原氨酸类似物的标记物,鲁米诺为化学发光反应底物,建立了一种高灵敏度化学发光免疫检测游离三碘甲腺原氨酸的方法。该法线性范围为0.90~80 ng/L,批内变异小于12.1%,批间相对标准偏差均小于15%,其余各项指标均良好。利用本法对血清样品进行了测定,关于甲状腺机能亢进组病人的临床诊断符合率达到83.3%。与其它化学发光免疫分析方法比较所得相关系数为0.9005。在方法条件选择上,以尽可能保持游离激素和蛋白结合激素之间的平衡为原则,提高游离三碘甲腺原氨酸浓度测定的准确性。  相似文献   

18.
在传统的板式化学发光免疫分析法和管式磁颗粒化学发光免疫分析法基础上,建立了人血清中糖类抗原125(CA125)的板式磁颗粒化学发光免疫分析方法.该方法以磁性微粒子作为分离固相,96孔板为反应容器,辣根过氧化物酶(HRP)催化H2O2-luminol化学发光体系作为检测体系.本法测定CA125的检测灵敏度可达2.0U/mL,线性范围为0~400U/mL.与常用的包被板化学发光免疫分析方法对比,该方法检测范围宽.与管式磁颗粒化化学发光法比较,其分析灵敏度与精密度高、线性范围、分析通量以及分析成本方面均显示了很好的优越性.采用该方法对人血清中CA125进行测定并与罗氏全自动电化学发光系统的测值结果进行了比对,两者显示了良好的相关性.  相似文献   

19.
Fe(Ⅱ)和Ti(Ⅲ)与鲁米诺的化学发光反应已有报道,我们发现,Cr(Ⅱ)、Mo(Ⅲ)、W(Ⅲ)、U(Ⅲ)、CN-、SO32-、抗坏血酸等一大类还原剂均可与鲁米诺溶液作用产生化学发光,本文利用Jones还原柱产生V(Ⅱ),首次研究了V(Ⅱ)与鲁米诺的化学发光反应,在此基础上建立了钒的流动注射化学发光分析法,方法的检出限是8×10-11g/mL钒,线性范围是4×10-10~1×10-5g/mL钒。测定的相对标准偏差小于2%,考察了20余种常见离子对测定的干扰情况,方法已用于水样中痕量钒的测定,初步探讨了发光反应的机理。  相似文献   

20.
建立了测定葡萄糖的血红蛋白模拟酶催化荧光法.采用斜率法,利用血红蛋白的过氧化物酶催化活性,无毒性的L-酪氨酸作为荧光底物,与 GOD催化氧化葡萄糖的反应进行偶联,成功的测定了果蔬组织液中的葡萄糖并获得了最佳实验条件.考察缓冲溶液pH和浓度对荧光斜率的影响,发现在高pH条件下采用NH3-NH4Cl溶液有荧光增强作用.干扰物质对测定H2O2的影响也进行了考察.荧光法对反应产物测定,以3倍标准偏差计算葡萄糖检出限为1.3×10-8 mol/L,线性范围为5.0×10-8~1.2×10-4 mol/L.对4.0×10-6 mol/L的葡萄糖溶液测定相对标准偏差为3.79% (n=9).本法成功地应用于果疏中葡萄糖的测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号