首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
非还原脲变性蛋白溶菌酶稀释复性过程中集聚现象的研究   总被引:1,自引:0,他引:1  
边六交  梁长利  杨晓燕  刘莉 《化学学报》2007,65(24):2891-2897
用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、阴极聚丙烯酰胺凝胶电泳和高效凝胶排阻色谱法, 研究了非还原脲变性蛋白溶菌酶在稀释复性过程中的集聚现象. 实验发现, 在整个稀释复性过程中, 没有蛋白溶菌酶集聚体沉淀产生. 当最终复性液中蛋白溶菌酶浓度小于4.0 mg/mL时, 复性过程中不会形成蛋白溶菌酶分子集聚体; 当最终复性液中蛋白溶菌酶浓度介于4.0~8.0 mg/mL时, 复性过程中会形成由非共价相互作用所引起的蛋白溶菌酶二分子和三分子集聚体; 而当最终复性液中蛋白溶菌酶浓度大于8.0 mg/mL时, 复性过程中除了会形成二分子和三分子蛋白溶菌酶集聚体外, 还会形成四分子蛋白溶菌酶集聚体. 在此基础上, 结合文献, 对非还原脲变性蛋白溶菌酶的稀释复性过程进行了描述.  相似文献   

2.
采用非变性聚丙烯酰胺凝胶电泳、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、高效凝胶排阻色谱以及激光光散射光谱研究了脲变性牛碳酸酐酶B的稀释复性过程及其集聚作用。在脲变性牛碳酸酐酶B的稀释复性过程中,当最终复性液中脲浓度大于2.0mol/L时,牛碳酸酐酶B在复性液中以单分子和二分子集聚体形式存在;当最终复性液中脲浓度小于2.0mol/L大于1.0mol/L时,牛碳酸酐酶B在复性液中以单分子、二分子集聚体和少量多分子集聚体形式存在;而当最终复性液中脲浓度小于等于1.0mol/L时,脲变性牛碳酸酐酶B复性时会形成均匀透明的上清和不透明的沉淀,牛碳酸酐酶B在上清和沉淀中达到动态解离平衡,且在两相中都以单分子、二分子集聚体和少量多分子集聚体形式存在。溶液中二分子和多分子牛碳酸酐酶B集聚体是通过牛碳酸酐酶B分子之间的疏水和静电相互作用力而形成的,当溶液中这些成分达到一定浓度并且溶液中脲的浓度小于某一个值时,它们之间会通过非共价形式形成沉淀。  相似文献   

3.
边六交  杨晓燕  刘莉 《色谱》2005,23(2):129-133
在体积排阻色谱柱上研究了还原剂存在时脲和盐酸胍变性的3种溶菌酶溶液的复性和分离过程。当变性液中原始溶菌酶浓度大于10 g/L时,变性溶菌酶在体积排阻色谱柱上除了复性为与未变性溶菌酶出峰时间相同的复性态溶菌酶分子外,还形成了溶菌酶折叠中间体的二分子集聚体。这个结果得到了用稀释法复性时溶菌酶的蛋白电泳检测结果的支持。与稀释法复性相比较,用体积排阻色谱法复性时所形成的折叠中间体二分子集聚体的量要远远低于用稀释法所形成的集聚体的量。  相似文献   

4.
边六交  杨晓燕  刘莉 《化学学报》2005,63(12):1081-1086
建立在蛋白质变性-复性三态模型的基础上, 给出了一个描述在变性液中变性蛋白质复性时蛋白质浓度和其复性率的关系式. 通过这个关系式, 可以获得两个重要的描述蛋白质变性-复性体系特征的参数, 一个是包含在一个集聚体分子中的变性蛋白质的分子数目n, 另一个是蛋白质从原始态到形成集聚体过程中的表观集聚平衡常数K. 以三种溶菌酶在脲和盐酸胍溶液中的变性-复性过程对此方程进行了验证, 结果表明所给出的方程能够很好地描述三种溶菌酶在这两种变性液中的复性结果, 三种溶菌酶在两种变性液中有形成二分子集聚体的趋势. 变性溶菌酶在复性过程中的电泳和高效凝胶排阻色谱也同时能够监测到复性过程中集聚体的形成, 并且监测结果与上述方程所得的结果一致.  相似文献   

5.
高效弱阳离子交换色谱法对脲还原变性溶菌酶的折叠研究   总被引:2,自引:0,他引:2  
用高效弱阳离子交换色谱(HPWCX)对脲还原变性溶菌酶(Lys)进行了复性研究. 在流动相中脲浓度固定为4.0 mol•L-1和选用对天然态蛋白有稳定作用的硫酸铵为盐或置换剂时, 在蛋白浓度为15.0~50.0 mg•mL-1时, HPWCX法比稀释法活性回收率高. 为了提高Lys的质量及活性回收率对所用色谱条件进行了优化研究, 当蛋白起始浓度为20.0 mg•mL-1时, Lys的质量回收率和活性收率分别为97.8%和95.4%. 表明此种方法简便且有可能对其他还原变性蛋白的复性具有通用性.  相似文献   

6.
用疏水色谱复性并同时纯化蛋白质的机理及其应用   总被引:13,自引:0,他引:13       下载免费PDF全文
耿信笃  白泉 《中国科学B辑》2002,32(5):460-471
变性蛋白表面的疏水氨基酸残基有与疏水色谱固定相(STHIC)颗粒相互作用的倾向, 两者之间的疏水相互作用能够抑制变性蛋白分子间的相互聚集. 同时疏水色谱固定相还能在分子水平上给变性蛋白分子提供足够高的能量, 使其瞬时脱水并折叠成其天然构象或不同的折叠中间体. 变性蛋白在疏水界面上的折叠不仅取决于其氨基酸之间的特异性相互作用及疏水色谱固定相的结构, 而且还取决于固定相和流动相之间的协同作用. 同时, 还提出了高效疏水相互色谱(HPHIC)进行蛋白折叠的机理及其进行蛋白折叠时能实现质量控制的原理. 在适当的色谱条件下, HPHIC 可使几种变性蛋白一步实现复性及同时纯化. 此外, 还设计制造出了直径比柱长大得多的实验室型和制备型“变性蛋白复性及同时纯化装置, USRPP”, 该“装置”具有完全除去变性剂、使蛋白质复性, 与杂蛋白分离及易于回收变性剂的“一石四鸟”功能. 该“装置”对变性蛋白的复性和纯化效率与通常使用的长柱相当. 在制备规模情况下, 该“装置”可以在低压梯度条件下简便、快速、而经济地应用于重组蛋白药物的制备. 文中以重组人干扰素-γ为例, 说明了制备型“装置”在其复性及同时纯化生产工艺中的应用.  相似文献   

7.
用疏水色谱对还原型胍变性牛胰岛素的折叠特性研究   总被引:4,自引:0,他引:4  
用疏水相互色谱(HPHIC)对还原胍变性牛胰岛素在疏水界面上的折叠与复性进行了研究.结果表明,采用普通流动相时,对还原胍变胰岛素的复性效果较差,而采用氧化型流动相可使其复性效率提高到66%,并用反相色谱(RPLC)、紫外吸收光谱、荧光光谱及MALDI-TOF对其复性效果进行了验证.同时与体积排阻色谱(SEC)和稀释法对还原胍变胰岛素的复性结果进行了比较.结果表明,SEC根本无法使还原胍变胰岛素复性,而稀释法的复性效率仅有2%.这进一步表明HPHIC是变性蛋白复性的有效工具,变性蛋白在疏水界面折叠过程中,蛋白质与固定相之间的疏水相互作用对蛋白折叠起着关键性的作用,是蛋白折叠的主要驱动力.  相似文献   

8.
采用变性和非变性电泳、 高效凝胶排阻色谱、 内源荧光发射光谱和荧光相图以及生物活性测定等方法, 研究了盐酸胍诱导的变性卵清溶菌酶分子的重折叠过程及此过程中卵清溶菌酶分子各稳定构象态的分布和过渡. 结果表明, 当复性液中盐酸胍浓度分别约为5.0和2.4 mol/L时, 变性卵清溶菌酶分子的重折叠过程各存在1个稳定折叠中间态, 重折叠过程符合"四态模型". 在卵清溶菌酶分子四态重折叠过程基础上, 结合盐酸胍与卵清溶菌酶分子之间的缔合-解离平衡, 给出了一个定量描述变性剂诱导的蛋白质分子复性过程中蛋白质分子复性率随溶液中变性剂浓度变化的方程. 该方程包含2个特征折叠参数, 一个是蛋白质分子从一个稳定构象态过渡到另一个稳定构象态的热力学过渡平衡常数k; 另一个是在此过程中平均每个蛋白质分子所结合的变性剂分子数目m. 通过这2个特征折叠参数能够定量描述盐酸胍诱导的变性卵清溶菌酶完全去折叠态、 折叠中间态和天然态分子随复性液中盐酸胍浓度变化的分布和过渡情况.  相似文献   

9.
采用非变性聚丙烯酰胺凝胶电泳、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、高效凝胶排阻色谱和激光光散射光谱研究了脲和盐酸胍诱导的牛碳酸酐酶B的去折叠.实验结果表明,在脲和盐酸胍诱导的牛碳酸酐酶B的去折叠过程中,溶液中只含有单分子牛碳酸酐酶B和二分子牛碳酸酐酶B集聚体;二分子牛碳酸酐酶B集聚体是通过单分子牛碳酸酐酶B之间的疏水和...  相似文献   

10.
以内源荧光光谱和荧光相图法研究了脲和盐酸胍诱导的卵清溶菌酶分子的去折叠过程,结果表明,当变性液中脲和盐酸胍的浓度分别约为4.0和3.0 mol/L时,卵清溶菌酶分子的去折叠过程均存在一个折叠中间态,这两个去折叠过程均符合"三态模型".在卵清溶菌酶分子"三态"去折叠过程的基础上,通过变性剂分子和卵清溶菌酶分子之间的缔合一...  相似文献   

11.
The aggregation interaction between reduced-denatured egg white lysozymes during refolding procedure in urea solution was studied by means of reducing and non-reducing protein electrophoreses. Results of non-reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of the supernatant and aggregate precipitate formed in refolding process show that except being refolded to native egg white lysozymes, the reduced-denatured lysozymes can also form the aggregates with molecular weights (MW) being separately about 30.0 and 35.0 kD, while the reducing SDS-PAGE and the refolding results in the presence of sodium dodecyl sulphate show that these aggregates are formed chiefly through the misconnection of disulfide bonds between the reduced-denatured lysozymes, and the aggregate precipitates are formed through the non-covalent interactions between the aggregates with molecular weight being about 30.0 kD. From the results of electrophoresis and size-exclusion chromatographic analyses, it can be inferred that the aggregates with molecular weights being about 30.0 and 35.0 kD are bi-molecular and tri-molecular egg white lysozyme aggregates, respectively. And finally, a suggested refolding mechanism of reduced-denatured egg white lysozymes in urea solution was presented.  相似文献   

12.
边六交  杨晓燕 《中国化学》2006,24(5):653-659
Based on three-state renaturation process of denatured proteins, an equation describing the effect of denaturant concentration on renaturation yield of denatured proteins was presented. By this equation, two parameters n(m1 -m2) and Ka can be obtained. The former indicates the difference in the number of denaturant molecules between the renaturation process of n number of refolding intermediates from refolding intermediate state to native state and their aggregate process from refolding intermediate state to aggregate state, the latter denotes the apparent aggregate equilibrium constant for protein molecules aggregated from native state to aggregate state, and from them, the characteristics of the renaturation process of denatured proteins in denaturant solution can be identified. This equation was tested by the renaturation processes of denatured egg white lysozyme in guanidine hydrochloride and urea solutions, with the results to show that when guanidine hydrochloride and urea concentrations were separately higher than 1.25 and 3.00 mol/L or separately lower than 1.00 and 3.00 mol/L, the refolding intermediates of egg white lysozymes were more easily aggregated to aggregate state or more easily renatured to native state, respectively. Under different initial total egg white lysozyme concentrations in urea solution, the refolding egg white lysozyme intermediates could be deduced to have a tendency to form a bimolecular intermediate aggregate, and this inference was further confirmed by their nonreducing SDS-PAGE and size exclusion chromatography.  相似文献   

13.
Lysozyme refolding with immobilized GroEL column chromatography   总被引:4,自引:0,他引:4  
A refolding chromatography with immobilized molecular chaperonin GroEL was studied for the reactivation of denatured-reduced lysozyme. The effect of denaturant concentration (guanidine hydrochloride, 0.1-1.5 M) in the elution buffer, the elution flow-rate, and the loading concentration and volume of the substrate protein on the reactivation yield was studied. All the operating parameters showed minor effects on the recovery yield of lysozyme mass, which remained at 90-100%, but exhibited relatively notable influences on the specific activity of the recovered lysozyme. For example, there existed an optimum denaturant concentration of about 1 M at which the highest yield of specific activity (up to 97%) was obtained. Using the immobilized GroEL column, 3 ml of the lysozyme (1 mg/ml) per batch could be refolded at an overall yield of 81%, which corresponded to a refolding productivity of 54 mg per 1 gel per h. At comparable reactivation yields (over 80%), this value of productivity was over four-times larger as that of the size-exclusion refolding chromatography reported previously (12 mg per 1 gel per h), indicating the advantage of the present system for producing a high throughput in protein refolding operations.  相似文献   

14.
Continuous chromatographic protein refolding   总被引:2,自引:0,他引:2  
Column-based protein refolding requires a continuous processing capability if reasonable quantities of protein are to be produced. A popular column-based method, size-exclusion chromatography (SEC) refolding, employs size-exclusion matrices to separate unfolded protein from denaturant, thus refolding the protein. In this work, we conduct a comparison of SEC refolding with refolding by batch dilution, using lysozyme as a model protein. Lysozyme refolding yield was found to be extremely sensitive to the chemical composition of the refolding buffer and particularly the concentration of dithiothreitol (DTT) introduced from the denatured protein mixture. SEC refolding was not adversely affected by DTT carry-over as small contaminants in the denatured solution are separated from protein during the refolding operation. We also find that, contrary to previous reports, size-exclusion refolding on batch columns leads to refolding yields slightly better than batch dilution refolding yields at low protein concentrations but this advantage disappears at higher protein concentrations. As batch-mode chromatography would be the limiting step in a column based refolding downstream process, the batch column refolding method was translated to a continuously operating chromatography system (preparative continuous annular chromatography, P-CAC). It was shown that the P-CAC elution profile is similar to that of a stationary column, making scale-up and translation to P-CAC relatively simple. Moreover, it was shown that high refolding yields (72%) at high protein concentration (>1 mg ml(-1)) could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号