首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
通过基于密度泛函理论的第一原理计算,优化了纤锌矿结构的化合物TmZn15S16(Tm=V,Cr,Mn)的几何结构,并研究了它们的磁学性能.结果表明:TmZn15S16均为典型的半金属铁磁体,它们的超胞磁矩分别为3.0099μB,3.9977μB和5.0092μB;这些磁矩主要来源于被掺入的过渡元素;CrZn15S16的半金属特性比VZn15S16和MnZn15S16更稳定;这些半金属铁磁体的半金属带隙均比较宽,表明它们可能具有较高的居里温度;TmZn15S16中杂质过渡离子的电子结构分别为V:eg2↑t12g↑,Cr:eg2↑t22g↑和Mn:eg2↑t32g↑.  相似文献   

2.
基于第一性原理,优化了含Cr的高温相尖晶石结构材料(CrxFe1-x)A(CryFe2-y)BO4 的几何结构,并对它们的磁电性能进行了计算.基十配位场理论分析了 CrFe2O4) 的电子结构及其具有半金属性的微观机制.计算表明,仅当x=1.0、y=0.0 时,(CrxFe1-x)A (CrvFe2-y)BO4具有半金属性.CrFe2O4 是典型的亚铁磁性耦合的IIB 监理工程型半金属,其分子磁矩约为5.6μB,大于Fe3O4 的4.0μB.在CrFe2O4 的四面体晶体场中,中心离子的电子结构可近似写为Cr+t12gt32g↓; 八面体晶体场中,中心离子的电子结构可近似写为 Fe2+t32g↓e2e↓t12g↓.CrFe2O4具有半金属性的原因是在配合物 ML4和 ML6 中,中心离子与周围 O 配体间存在强烈的共价键作用,该作用使中心离子与 O 配体间形成杂化轨道,导致自旋向上子带被撕裂,进一步使费米面止好处于自旋向上子带带隙中.  相似文献   

3.
基于第一性原理, 优化了含Cr的高温相尖晶石结构材料(CrxFe1-x)A(CryFe2-y)BO4的几何结构, 并对它们的磁电性能进行了计算. 基于配位场理论分析了CrFe2O4的电子结构及其具有半金属性的微观机制. 计算表明, 仅当x=1.0、y=0.0时, (CrxFe1-x)A(CryFe2-y)BO4具有半金属性. CrFe2O4是典型的亚铁磁性耦合的IIB型半金属, 其分子磁矩约为5.6 μB, 大于Fe3O4的4.0 μB. 在CrFe2O4的四面体晶体场中, 中心离子的电子结构可近似写为Cr+t12g↑t32g↓; 八面体晶体场中, 中心离子的电子结构可近似写为Fe2+t32g↑e2g↑t12g↓. CrFe2O4具有半金属性的原因是在配合物ML4和ML6中, 中心离子与周围O配体间存在强烈的共价键作用, 该作用使中心离子与O配体间形成杂化轨道, 导致自旋向上子带被撕裂, 进一步使费米面正好处于自旋向上子带带隙中.  相似文献   

4.
采用基于密度泛函理论的第一性原理方法,计算Fe_3O_4,Fe_3O_4(001)表面以及过渡元素掺杂表面的电子结构和磁性。结果表明Fe_3O_4的半金属性主要来源于B位Fe离子,并且Fe的3d轨道发生强烈自旋极化;比较(001)表面不同终端A和B终端的表面能和电子结构,得出两种终端稳定性存在差异且A终端较稳定同时表现半金属性;由过渡元素V、Cr、Mn、Co、Cu和Zn取代Fe_3O_4(001)表面A终端A位Fe进行掺杂,形成的6种新表面结构都保持了半金属性。对比它们的表面能和磁矩,Mn掺杂的表面结构最稳定并且磁矩明显增大。  相似文献   

5.
过渡金属;超氧离子;白血病;肺癌;2-乙酰吡啶吖嗪及其与Co2+、Ni2+、Fe3+、Zn2+配合物的合成和生物活性  相似文献   

6.
采用基于密度泛函理论的第一性原理方法,计算Fe3O4,Fe3O4(001)表面以及过渡元素掺杂表面的电子结构和磁性。结果表明Fe3O4的半金属性主要来源于B位Fe离子,并且Fe的3d轨道发生强烈自旋极化;比较(001)表面不同终端A和B终端的表面能和电子结构,得出两种终端稳定性存在差异且A终端较稳定同时表现半金属性;由过渡元素V、Cr、Mn、Co、Cu和Zn取代Fe3O4(001)表面A终端A位Fe进行掺杂,形成的6种新表面结构都保持了半金属性。对比它们的表面能和磁矩,Mn掺杂的表面结构最稳定并且磁矩明显增大。  相似文献   

7.
采用密度泛函理论中的广义梯度近似对FMBen(FM=Fe,Co,Ni;n=1-12)团簇的几何构型进行优化,并对能量、频率和磁性进行了计算,同时考虑了电子的自旋多重度.结果表明,纯铍团簇的幻数是由电子的壳层模型确定,而FMBen团簇的幻数主要由几何效应来解释;掺杂铁磁性的过渡金属(Fe,Co,Ni)提高了纯团簇的稳定性.二阶能量差分表明FMBen(FM=Fe,Co,Ni)的幻数分别为5,10;5,10;4,10.通过对磁性质的研究发现掺杂不同的过渡金属时,磁矩出现了不同的变化规律.  相似文献   

8.
采用密度泛函理论中的广义梯度近似对FMBen(FM=Fe, Co, Ni; n=1-12)团簇的几何构型进行优化, 并对能量、频率和磁性进行了计算, 同时考虑了电子的自旋多重度. 结果表明, 纯铍团簇的幻数是由电子的壳层模型确定, 而FMBen团簇的幻数主要由几何效应来解释; 掺杂铁磁性的过渡金属(Fe, Co, Ni)提高了纯团簇的稳定性. 二阶能量差分表明FMBen(FM=Fe, Co, Ni)的幻数分别为5, 10; 5, 10; 4, 10. 通过对磁性质的研究发现掺杂不同的过渡金属时, 磁矩出现了不同的变化规律.  相似文献   

9.
利用在无机盐存在下,水溶性高聚物可分为两相的特点,研究了在聚乙二醇-邻苯二酚紫-邻二氮菲-硫酸铵体系中,Ca2+、Al3+、Co2+、Cu2+、Fe3+、Ni2+、Pb2+、Zn2+混合溶液中Ca2+的分离及测定条件,实现了Ca2+与Al3+、Co2+、Cu2+、Fe3+、Ni2+、Pb2+、Zn2+的定量分离和测定.Ca2+质量浓度在0.05~1.0 μg/mL范围内具有良好的线性关系,回收率92%~105%.  相似文献   

10.
多组分混合样品中铝的测定。利用PEG PAN (NH4)2SO4体系,对Al3+、Co2+、Cu2+、Fe3+、Mg2+、Ni2+、Zn2+混合液进行萃取分离,并用络天青S对Al3+进行定量测定。在pH 5.3 的HOAc NaOAc缓冲溶液中Co2+、Cu2+、Fe3+、Mg2+、Ni2+、Zn2+ 几乎被PEG相完全萃取,Al3+ 几乎不被萃取。实现了对上述混合离子溶液中Al3+ 的定量测定。Al3+ 含量在0~0.40 mg·L-1范围内具有良好的线性关系,回收率在96.8%~103.1%。  相似文献   

11.
The new half-metals Fe2ScO4 and FeSc2O4 were designed and their spinel structures were optimized based on the first-principle pseudo-potential method. Their electric and magnetic properties including molecular magnetic moments and electronic structures were calculated and analyzed, and then were compared with those of Fe3O4. The calculation showed that Fe2ScO4 and FeSc2O4 were both new ferromagnetic II B-type half-metals, but Fe3O4 was ferrimagnetic. The molecular magnetic moment of Fe2ScO4 is about 7.28 1B, which is much larger than the 4.0 1B of Fe3O4 and 3.96 1B of Fe2ScO4. The molecular magnetic moment of Fe2ScO4 mainly came from the spin-polarization of Fe3d electrons. Also, the conductance of Fe2ScO4 was a little larger than that of Fe3O4. For Fe2ScO4, the average electronic structure of Sc on A-sites wasSc+3s23p43d2 and that of Fe on B-sites was Fe2+t2g3↑"tg2↑"t2g↓. It can be predicted that the new half-metal Fe2ScO4 has wider application ground in spin electronic instruments because of its larger magnetoresistance compared to Fe3O4 and FeSc2O4.  相似文献   

12.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

13.
The electronic and spin states of a series of Co-Fe Prussian blue analogues containing Na(+) ion in the lattice, Na(x)()Co(y)()Fe(CN)(6) x zH(2)O, strongly depended on the atomic composition ratio of Co to Fe (Co/Fe) and temperature. Compounds of Co/Fe = 1.5 and 1.15 consisted mostly of the Fe(III)(t(2g)(5)e(g)(0), LS, S = 1/2)-CN-Co(II)(t(2g)(5)e(g)(2), HS, S = 3/2) site and the Fe(II)(t(2g)(6)e(g)(0), LS, S = 0)-CN-Co(III)(t(2g)(6)e(g)(0), LS, S = 0) site, respectively, over the entire temperature region from 5 to 350 K. Conversely, compounds of Co/Fe = 1.37, 1.32, and 1.26 showed a change in their electronic and spin states depending on the temperature. These compounds consisted mainly of the Fe(III)-CN-Co(II) site (HT phase) around room temperature but turned to the state consisting mainly of the Fe(II)-CN-Co(III) site (LT phase) at low temperatures. This charge-transfer-induced spin transition (CTIST) phenomenon occurred reversibly with a large thermal hysteresis of about 40 K. The CTIST temperature (T(1/2) = (T(1/2) descending + T(1/2) ascending)/2) increased from 200 to 280 K with decreasing Co/Fe from 1.37 to 1.26. Furthermore, by light illumination at 5 K, the LT phase of compounds of Co/Fe = 1.37, 1.32, and 1.26 was converted to the HT phase, and the relaxation temperature from this photoproduced HT phase also strongly depended on the Co/Fe ratio; 145 K for Co/Fe = 1.37, 125 K for Co/Fe = 1.32, and 110 K for Co/Fe = 1.26. All these phenomena are explained by a simple model using potential energy curves of the LT and HT phases. The energy difference of two phases is determined by the ligand field strength around Co(II) ions, which can be controlled by Co/Fe.  相似文献   

14.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

15.
A series of mononuclear, octahedral first-row transition metal ion complexes mer-[M(II)L0(2)](PF6)2 containing the tridentate neutral ligand 2,6-bis[1-(4-methoxyphenylimino)ethyl]pyridine (L0) and a Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II) ion have been synthesized and characterized by X-ray crystallography. Cyclic voltammetry and controlled potential coulometry show that each dication (except those of Cu(II) and Zn(II)) can be reversibly one-electron-oxidized, yielding the respective trications [M(III)L0(2)]3+, and in addition, they can be reversibly reduced to the corresponding monocations [ML2]+ and the neutral species [ML2]0 by two successive one-electron processes. [MnL2]PF6 and [CoL2]PF6 have been isolated and characterized by X-ray crystallography; their electronic structures are described as [Mn(III)L1(2)]PF6 and [Co(I)L0(2)]PF6 where (L1)1- represents the one-electron-reduced radical form of L0. The electronic structures of the tri-, di-, and monocations and of the neutral species have been elucidated in detail by a combination of spectroscopies: UV-vis, NMR, X-band EPR, Mossbauer, temperature-dependent magnetochemistry. It is shown that pyridine-2,6-diimine ligands are noninnocent ligands that can be coordinated to transition metal ions as neutral L0 or, alternatively, as monoanionic radical (L1)1-. All trications are of the type [M(III)L0(2)]3+, and the dications are [M(II)L0(2)]2+. The monocations are described as [Mn(III)L1(2)]+ (S = 0), [Fe(II)L0L1]+ (S = 1/2), [Co(I)L0(2)]+ (S = 1), [Ni(I)L0(2)]+ (S = 1/2), [Cu(I)L0(2)]+ (S = 0), [Zn(II)L1L0]+ (S = 1/2) where the Mn(II) and Fe(II) ions are low-spin-configurated. The neutral species are described as [Mn(II)L1(2)]0, [Fe(II)L1(2)]0, [Co(I)L0L1]0, [Ni(I)L0L1]0, and [Zn(II)L1(2)]0; their electronic ground states have not been determined.  相似文献   

16.
A series of pseudo-octahedral metal (M = Mn, Fe, Co, Ni, Cu, Zn) complexes 4 of a new redox-active ligand, 2,4,6,8-tetra(tert-butyl)-9-hydroxyphenoxazin-1-one 3, have been synthesized, and their molecular structures determined with help of X-ray crystallography. The effective magnetic moments of complexes 4 (M = Mn, Fe, Co, and Ni) measured in the solid state and toluene solution point to the stabilization of their high-spin electronic ground states. Detailed information on the electronic structure of the complexes and their redox-isomeric forms has been obtained using density functional theory (DFT) B3LYP*/6-311++G(d,p) calculations. The energy disfavored low-spin structures of manganese, iron, and cobalt complexes have been located, and based on the computed geometries and distribution of spin densities identified as Mn(IV)[(Cat-N-SQ)](2), Fe(II)[Cat-N-BQ)](2), and Co(II)[Cat-N-BQ)](2) compounds, respectively. It has been shown that stabilization of the high-spin structures of complexes 4 (M = Mn, Fe, Co) is caused by the rigidity of the molecular framework of ligands 3 that sterically inhibits interconversions between the redox-isomeric forms of the complexes. The calculations performed on complex 4 (M = Co) predict that a suitable structural modification that might provide for stabilization of the low-spin electromeric forms and create conditions for the valence tautomeric rearrangement via stabilization of the low-spin electromer and narrowing energy gap between the low-spin ground state tautomer and the minimal energy crossing point on the intersection of the potential energy surfaces of the interconverting structures consists in the replacement of an oxygen in the oxazine ring by a bulkier sulfur atom.  相似文献   

17.
The complexes of transition-metal ions (M2+, where M = Fe, Co, Ni, Cu, Zn, Cd, and Hg) with 2-acetylbenzimidazolethiosemicarbazone (L) are studied under electrospray ionization (ESI) conditions. The ESI mass spectra of Fe and Co complexes showed the complex ions corresponding to [M+2L-2H]+, and those of Ni and Zn complexes showed [M+2L-H]+ ions, wherein the metal/ligand ratio is 1:2 and the oxidation state of the central metal ion is +3 in the case of Fe and Co and +2 in the case of Ni and Zn. The Cd and Cu complexes showed preferentially 1:1 complex ions, i.e., [M+L-H]+ or [M+L+Cl]+, whereas Hg formed both 1:1 and 1:2 complex ions. During formation of the above complex ions one or two ligands are deprotonated after keto-enol tautomerism, depending on the nature and oxidation state of central metal ion. The structures and coordination numbers of the metal ions in the complex ions were studied by their collision-induced dissociation spectra and ion-molecule reactions with acetonitrile or propylamine in the collision cell. Based on these results it is concluded that Fe, Co, Ni and Zn form stable octahedral complexes, whereas tetrahedral or square planar complexes are formed preferentially for other metals. In addition, the Cu complex showed a [2L+2Cu-3H]+ ion with a Cu-Cu bond.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号