首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用密度泛函理论中的广义梯度近似对FMBen(FM=Fe, Co, Ni; n=1-12)团簇的几何构型进行优化, 并对能量、频率和磁性进行了计算, 同时考虑了电子的自旋多重度. 结果表明, 纯铍团簇的幻数是由电子的壳层模型确定, 而FMBen团簇的幻数主要由几何效应来解释; 掺杂铁磁性的过渡金属(Fe, Co, Ni)提高了纯团簇的稳定性. 二阶能量差分表明FMBen(FM=Fe, Co, Ni)的幻数分别为5, 10; 5, 10; 4, 10. 通过对磁性质的研究发现掺杂不同的过渡金属时, 磁矩出现了不同的变化规律.  相似文献   

2.
《化学学报》2012,70(15)
基于密度泛函理论中的BPBE方法和从头算的CCSD(T)方法,充分考虑自旋多重度,优化并得到了TiBn(n=1~12)团簇的稳定构型.二次差分能量分析表明n=2,8,10的团簇为幻数团簇.值得注意的是,电子相关效应对TiBn团簇的相对能量有重要影响.密度泛函理论方法得到n=3,7,10团簇为幻数团簇.对垂直电离势、垂直电子亲合势和化学硬度的分析表明,除TiB8外,n为偶数的团簇有较小的电子亲合势和较大的电离势,从反应性上来说,更稳定一些.  相似文献   

3.
利用密度泛函理论(DFT)中的B3LYP方法,在6-311G(d)基组的水平上系统研究了CaSin(n=1~10)团簇的几何构型、稳定性与光谱(红外与拉曼)性质.研究结果表明,CaSin团簇构型是在CaSin-1构型上戴帽1个原子而形成的;当n≥4,CaSin团簇的最低能量结构均为立体构型;Ca原子的掺杂降低了体系的化学稳定性;CaSi3与CaSi5是幻数结构;在相同的观察频段内,CaSi3团簇的红外与拉曼活性在低频段均表现较好,而在高频段拉曼活性则表现较差,与之不同的是CaSi5团簇的红外与拉曼活性在整个频段内都表现的较好.  相似文献   

4.
冯翠菊 《分子科学学报》2014,(2):124-125,127,126,128,130
基于第一性原理,利用密度泛函理论中广义梯度近似(GGA)对团簇Cun-1Ni和Cun(n=3-14)进行了结构优化和能量计算,结果表明,单质Cu团簇不是以密实结构而是以类平面结构生长,但Ni的掺杂使得Cu团簇结构以二十面体为基础生长并且增加了团簇的稳定性;团簇结合能的二阶差分计算表明Cu3Ni,Cu7Ni和Cu9Ni结构最为稳定;在团簇的最稳定结构中Ni原子趋于占据团簇的中心位置和更多的Cu原子形成化学键;位于表面的Cu原子成为Mülliken电荷的接受体而带负电性,这也可能是Ni掺杂Cu合金耐腐蚀性增强的原因之一;Ni的掺杂使原来没有磁性的铜团簇显示了磁性且总自旋磁矩表现明显的奇偶振荡,为1或2μB,与团簇的尺寸无关.  相似文献   

5.
李爽  王永成  王晓莉  张玉伟  马盼盼 《化学通报》2016,79(12):1196-1199
采用密度泛函理论(DFT)中的UB3LYP方法全参数优化了(IrO_2)n(n=1~5)纳米团簇的几何构型,并对能量、频率、电子性质以及相对稳定性进行了研究。结构优化表明,当n=1,2时,团簇为平面结构,n2时为三维结构。计算结果表明,桥位O原子与Ir原子之间有更多的电荷发生转移;通过计算解离能可知(IrO_2)n(n=2~5)纳米团簇中Ir4O8为稳定分子;经计算垂直电离能和垂直电子亲和势可知n=2,4为团簇的幻数。  相似文献   

6.
采用随机踢球模型结合密度泛函理论,在PBEPBE/RE/SDD/Si/6-311+G(d)水平下研究了中性和阴性的硅基稀土掺杂团簇MSi_7~q(M=Eu,Sm,Yb;q=0,-1)的几何结构、稳定性及电子和磁学性质.计算结果表明,阴性团簇的基态结构是在五角双锥的双锥侧面外法向方向加入一个Si原子而形成的3D结构,并且稀土原子M处于五角双锥的顶点;中性团簇的最低能结构是一个畸变的双帽八面体,并且M原子处于八面体的赤道面上.SmSi_7~-团簇在这3种稀土掺杂的团簇中具有最高的平均结合能和掺杂能,是这3种稀土掺杂团簇中最稳定的一种.Si_7团簇是非磁性团簇,但是当M原子(M=Eu,Sm,Yb)掺入其中时,由于镧系元素独特的原子磁性,使其变成了磁性团簇.此外,还模拟了各团簇前几种低能异构体的光电子能谱.  相似文献   

7.
用密度泛函(DFT)方法与反射式飞行时间质谱及光电子能谱的实验结果相结合, 研究了二元合金团簇负离子CoGe-n(n=1~12)的结合能、几何结构与电子结构. 理论计算得到的电子亲和势(EA)光电子能谱测量的结果符合得较好. 通过分态密度(PDOS)分析了s, p和d轨道电子的相互作用规律. 讨论了团簇的稳定性, 认为CoGe-10具有幻数团簇的性质.  相似文献   

8.
采用基于密度泛函理论的计算方法,对正二十面体金属X13(X=Cr,Mn,Fe,Co)中性和荷电团簇进行了全面的结构优化计算,研究了荷电对团簇的稳定性和磁性的影响.结果表明:荷负电能够使团簇的稳定性增强;荷电对不同团簇的原子间距离的影响不同;同时荷电对不同团簇磁性的影响也是不一样的,尤其是荷负电能够使Fe13和Co13团簇的磁性大大增强;荷电对不同团簇磁性的影响不是通过原子间距离的变化来实现的,而是受到原子内部电荷的转移和杂化程度的影响.  相似文献   

9.
采用Saunders全局优化随机踢球模型与密度泛函理论相结合的方法,在B3LYP/SDD理论水平下研究了锡基原子团簇Sn_n(n=2~10)及锡基稀土原子钐掺杂团簇Sn_nSm(n=1~9)的几何结构、稳定性、电子性质和磁性.结果表明,团簇Sn_nSm(n=1~9)中掺杂的钐原子通常位于主团簇的表面,掺杂团簇的基态结构更倾向于具有较高对称性的三维结构;二元锡基混合团簇的平均结合能变大,稳定性增强,这主要归因于Sn—Sm键比Sn—Sn键的键能大,具有更强的相互作用;掺杂团簇具有较高的磁性,其总磁矩主要源自于钐原子4f电子的贡献;随着团簇尺寸的增加,二元团簇的总磁矩呈现出趋于饱和的现象.  相似文献   

10.
用密度泛函理论(DFT)的B3LYP方法,在6-31G*水平上,对(AlN)+n和(AlN)-n(n=1~15)团簇的几何构型、红外光谱和热力学稳定性进行了研究,并对它们的电离能及电子亲和能进行了讨论.结果表明:(AlN)n团簇的电荷状态对簇合物的结构有较大影响,随着n的增大影响逐渐减小;所有平衡结构中不存在Al-Al和N-N键,Al-N键是惟一键型;(AlN)+n和(AlN)-n结构稳定性幻数与(AlN)n相同,即n=2,4,6,…等偶数结构较为稳定;(A1N)10团簇具有最大的电离能(IP=9.14 eV)和最小的电子亲和能(EA=0.19eV),较其他团簇更稳定.  相似文献   

11.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

12.
The geometries, stabilities, and electronic and magnetic properties of Y(n)Al (n=1-14) clusters have been systematically investigated by using density functional theory with generalized gradient approximation. The growth pattern for different sized Y(n)Al (n=1-14) clusters is Al-substituted Y(n+1) clusters and it keeps the similar frameworks of the most stable Y(n+1) clusters except for Y(9)Al cluster. The Al atom substituted the surface atom of the Y(n+1) clusters for n<9. Starting from n=9, the Al atom completely falls into the center of the Y-frame. The Al atom substituted the center atom of the Y(n+1) clusters to form the Al-encapsulated Y(n) geometries for n>9. The calculated results manifest that doping of the Al atom contributes to strengthen the stabilities of the yttrium framework. In addition, the relative stability of Y(12)Al is the strongest among all different sized Y(n)Al clusters, which might stem from its highly symmetric geometry. Mulliken population analysis shows that the charges always transfer from Y atoms to Al atom in all different sized clusters. Doping of the Al atom decreases the average magnetic moments of most Y(n) clusters. Especially, the magnetic moment is completely quenched after doping Al in the Y(13), which is ascribed to the disappearance of the ininerant 4d electron spin exchange effect. Finally, the frontier orbitals properties of Y(n)Al are also discussed.  相似文献   

13.
Determinations of the lowest energy structures and electronic properties of MgBen (n=2-12) clusters werecarried out by using density-functional theory. It was found that MgBe3 and MgBe9 clusters with higherbinding energy and larger HOMO-LUMO gap are more stable than the neighboring clusters. The electronicproperties from van der Waals to covalent and bulk metallic behavior in MgBen (n=2-12) clusters arediscussed with the evolution of the size, and the data indicates Magnesium-doped Beryllium clusters alreadyearly appear some metallic-like features than host Ben clusters. By analyzing electronic properties of MgBen(n=2-12) clusters, it can be concluded that Mg-doped reduces the stabilities of Be clusters.  相似文献   

14.
Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.  相似文献   

15.
The size-dependent electronic, structural, and magnetic properties of Mn-doped gold clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. A number of new isomers are obtained for neutral MnAu(n) (n = 1-16) clusters to probe the structural evolution. The two-dimensional (2D) to three-dimensional (3D) transition occurs in the size range n = 7-10 with manifest structure competitions. From size n = 13 to n = 16, the MnAu(n) prefers a gold cage structure with Mn atom locating at the center. The relative stabilities of the ground-state MnAu(n) clusters show a pronounced odd-even oscillation with the number of Au atoms. The magnetic moments of MnAu(n) clusters vary from 3 μ(B) to 6 μ(B) with the different cluster size, suggesting that nonmagnetic Au(n) clusters can serve as a flexible host to tailor the dopant's magnetism, which has potential applications in new nanomaterials with tunable magnetic properties.  相似文献   

16.
A systematic theoretical study of the PbnM (M=C, Al, In, Mg, Sr, Ba, and Pb; n=8, 10, 12, and 14) clusters have been investigated to explore the effect of impurity atoms on the structure and electronic properties of lead clusters. The calculations were carried out using the density functional theory with generalized gradient approximation for exchange-correlation potential. Extensive search based on large numbers of initial configurations has been carried out to locate the stable isomers of PbnM clusters. The results revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurity atom. Whereas, the impurity atoms smaller than Pb favor to occupy the endohedral position, the larger atoms form exohedral capping of the host cluster. The stability of these clusters has been analyzed based on the average binding energy, interaction energy of the impurity atoms, and the energy gap between the highest occupied and lowest unoccupied energy levels (HLG). Based on the energetics, it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. The stability analysis of these clusters suggests that, while the substitution of Pb by C or Al enhances the stability of the Pbn clusters, Mg lowers the stability. Further investigations of the stability of PbnM clusters reveal that the interplay between the atomic and electronic structure is crucial to understand the stability of these clusters. The energy gap analysis reveals that, while the substitution of Mg atom widens the HLG, all other elements reduce the gap of the PbnM clusters.  相似文献   

17.
The geometry, electronic properties, and active sites of copper clusters doped with Ni or Pd atoms, Cu(n)()(-)(1)M (n = 2-6; M = Ni, Pd) have been investigated using first-principles methods. Planar structures are energetically favorable in Cu(n)()(-)(1)Ni (n = 2-6). However, for Pd-doped clusters, three-dimensional structures are competitive in energy, and for n = 6, the most stable structure is not planar. Several properties of doped copper clusters present odd-even oscillations as the number of copper atoms grow. The different atomic ground-state configuration of Ni and Pd determines the bonding and electronic properties of doped copper clusters. The interaction between impurities and copper atoms can modify the chemical hardness and active sites of doped copper clusters markedly inducing directionality in the reactivity. This effect is relevant to the behavior of catalysts as well as in the growth of metallic films.  相似文献   

18.
Energetic and electronic structures of the on-top Al13Inm (n = 1 ~12,m = -1,0,+1)clusters have been investigated by employing a first-principles pseudo-potential plane wave method.Several parameters such as binding energies,second differences of energy and vertical-electron detachment energies have been adopted to characterize and evaluate the structure stability of Al13In (n = 1 ~ 12) clusters.The optimized models show that the Al13 moieties in the clusters can not retain the original regular icosahedron structure.Results from binding energy and second difference of energy show that Al13In and Al13In- clusters with even n are more stable than those with odd n in contrast with Al13In+ clusters.The calculation of vertical-electron detachment energies (VDE) of Al13In clusters indicates that Al13In and Al13In- clusters with even n are closer to the closed shell of the Jellium model.Further analysis of electron density of states and electron density differences reveals that the enhanced stability of Al13In- clusters is not only associated with the closed shell of valence electrons but also with the bonding type between I and associated Al atoms.  相似文献   

19.
A comparative study of the adsorption of an O2 molecule on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based on norm-conserving pseudo-potentials and numerical basis sets. For pure Au4 +, Au6+, and Au7+ clusters, the O2 molecule is adsorbed preferably on top of low coordinated Au atoms, with an adsorption energy smaller than 0.5 eV. Instead, for Au5+ and Au8+, bridge adsorption sites are preferred with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au(n)+ is almost unperturbed after O2 adsorption. The electronic charge flows towards O2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O2 is adsorbed on top of Au atoms, and both the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O2 increases. On the other hand, we studied the adsorption of an O2 molecule on doped MAu(n)+ clusters, leading to the formation of (MAu(n)O2+) ad complexes with different equilibrium configurations. The highest adsorption energy was obtained when both atoms of O2 bind on top of the M impurity, and it is larger for Ti doped clusters than for Fe doped clusters, showing an odd-even effect trend with size n, which is opposite for Ti as compared to Fe complexes. For those adsorption configurations of (MAu(n)O2+) ad involving only Au sites, the adsorption energy is similar to or smaller than that for similar configurations of Au(n)+1O2 + complexes. However, the highest adsorption energy of (MAu(n)O2+) ad is higher than that for (Au(n)+1O2+) ad by a factor of approximately 4.0 (1.2) for M = Ti (M = Fe). The trends with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAu(n)O2+) ad complexes with the highest O2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti-parallel) spin coupling of MAu(n)+ clusters and O2 molecules. Finally, we obtained the minimum energy equilibrium structure of complexes (Au(n)O2+) dis and (MAu(n)O2+) dis containing two separated O atoms bonded at different sites of Au(n)+ and MAu(n)+ clusters, respectively. For (MAu(n)O2 (+)) dis, the equilibrium configuration with the highest adsorption energy is stable against separation in MAu(n)+ and O2 fragments, respectively. Instead, for (Au(n)O2+) dis, only the complex n = 6 is stable against separation in Au(n)+ and O2 fragments. The maximum separation energy of (MAu(n)O2+) dis is higher than the O2 adsorption energy of (MAu(n)O2+) ad complexes by factors of approximately 1.6 (2.5), 1.6 (1.7), 1.5 (2.4), 1.5 (1.3), and 1.6 (1.8) for M = Ti (Fe) complexes in the range n = 3-7, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号