首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new environmentally friendly catalyst, H4SiW12O40-polyaniline (PAn), was prepared, and n-butyraldehyde 1,2-propanediol acetal was synthesized from n-butyraldehyde and 1,2-propanediol in the presence of H4SiW12O40-PAn. The influence factors of the synthesis were discussed, and the best reaction conditions were found: the molar ratio of n-butyraldehyde to 1,2-propanediol is 1:1.5, the amount of catalyst used is 1.2% of feed stock, and the reaction time is 1.0 h. H4SiW12O40-PAn is an excellent catalyst for synthesizing n-butyraldehyde 1,2-propanediol acetal, and the yield can reach more than 95.2%. *Translated from Journal of Central China Normal University (Natural Sciences Edition), 2005, 39(9) (in Chinese), 2004, 28(4) (in Chinese)  相似文献   

2.
《印度化学会志》2023,100(6):101007
A series of tungstophosphoric acid supported on activated carbon derived from left-over orange-peel catalysts (TPA/OAC) have been prepared. These catalysts were examined for one-pot catalytic transformation of fructose/glucose to 5-ethoxymethylfurfural. Physico-chemical properties of the catalytic materials were executed by using various characterization methods. Spectroscopic analysis results propose that TPA was finely distributed on the high surface area carbon support with persistent Keggin ion structure. The EMF yield is depended on the content of active component TPA on support and also on the reaction conditions. The catalyst with 25 wt% TPA on OAC presented highest activity towards EMF synthesis from fructose. Although, the catalyst 25 wt% TPA/OAC showed low activity towards EMF synthesis from glucose, higher yields of ethyl glucopyranoside could be formed from glucose in EtOH. Activated carbon was synthesized by carbonization of orange peel treated with H3PO4, which was used as a good support for HPAs. The catalysts are quite stable and recyclable for the dehydrative alkylation of fructose.  相似文献   

3.
The condensation reaction of 1,2-diketones and o-phenylenediamines was investigated in the presence of nano-sized mesoporous silica (MCM-41) supported 12-tungstophosphoric acid (TPA) as solid acid catalyst. Nano-sized MCM-41 was synthesized and the catalysts with different loading amounts of TPA (5–15 wt.%) were prepared and characterized by XRD, FT-IR and SEM techniques. The results confirm good dispersion of TPA on the solid support. The catalyst is reusable many times without loss in its activity.  相似文献   

4.
Solid H3Mo12O40P is used for an efficient one-pot synthesis of amidoalkyl naphthols using aromatic aldehydes, β-naphthol, and urea or amides in carbon tetrachloride. The catalyst was efficiently recovered from the reaction mixture and reused with negligible loss of catalyst activity. Ambient conditions, simple workup, and good yield are some of the striking features of the present protocol.  相似文献   

5.
We describe regioselective synthesis of pyrazolo[3,4-b]quinoline derivatives by multicomponent reaction of dimedone, 5-aminopyrazolone, and aromatic aldehydes in presence of H3PW12O40 as catalyst. When this multicomponent reaction was investigated without catalyst under reflux conditions, a mixture of products was obtained, while the reaction successfully proceeded to formation of pyrazolo[3,4-b]quinoline in presence of H3PW12O40. Good product yield, short experimental time, and low-cost catalyst provide convenient synthesis for formation of pyrazolo[3,4-b]quinoline pharmacological compounds.  相似文献   

6.
A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based catalysts were characterized by XRD, TEM and BET techniques. Their catalytic performances were tested in a slurry-bed reactor under FTS reaction conditions. The drying and crystallization were carried out simultaneously during SCFD, therefore, the catalysts prepared by SCFD method have ideal structure and show the FTS performance superior to the others prepared by CD method. The FTS activity and selectivity were improved via adding Zn, Mn and K promoters, and less CH4 and CO2 as well as higher yield of C5+ products were achieved. The optimal performance of a 92% CO conversion and a 65% C5+ product yield was obtained over a catalyst with the component of Co/Zn/Mn/K = 100/50/10/7. Furthermore, the catalytic performance was studied under the conditions of liquid-phase and supercritical phase slurry-bed, and C5+ product yield were 57.4% and 65.4%, respectively. In summary, better catalytic performance was obtained using the nanosized catalyst prepared by SCFD method under supercritical reaction conditions, resulting in higher conversion of CO, less CO2 byproduct, and higher yield of C5+ products.  相似文献   

7.
We have investigated synthesis as well as purification of 5,5?-bis(tridecafluorohexyl)-2,2′:5′,2″:5″,2?-quaterthiophene (BFH-4?T, n-type organic semiconducting material) using supercritical carbon dioxide (scCO2) as a green solvent. BFH-4T was obtained in good selectivity and high yield by TDAE/PdCl2-catalyzed reductive coupling reaction of 5-bromo-5′-(tridecafluorohexyl)-2,2′-bithiophene in scCO2. We have also successfully established purification of the reaction mixture by passing scCO2 in the reaction vessel. The product was yellow powder of BFH-4T with purity of more than 99% and Pd catalyst was not contained.  相似文献   

8.
A highly efficient and facile procedure for the one‐pot three‐component synthesis of 3,4‐dihydropyrimidin‐2‐(1H )ones/thiones from the one‐pot condensation of aldehyde, β‐dicarbonyl compound and urea/thiourea was developed. The methodology is applicable to a wide range of substrates with high yield in the presence of (C5H6N4O)(C5H5N4O)3(C5H4N4O)[Bi2Cl11]Cl2. The complex is an air‐stable, environmentally friendly and recoverable catalyst and can efficiently catalyze the Biginelli reaction. The catalyst has high catalytic efficiency with low catalyst loading, and can be recycled ten times with only a small loss of activity.  相似文献   

9.
TiSiW_(12)O_(40)/TiO_2催化合成磷酸三甲苯酯的研究   总被引:8,自引:1,他引:8  
杨锦飞 《有机化学》2003,23(11):1317-1319
应用TiSiW_(12)O_(40)/TiO_2催化剂合成磷酸三甲苯酯研究结果表明,该催化 剂具有较高的催化活性。考察了催化剂用量、反应温度和反应时间对酯产率的影响 。在典型反应条件(催化剂用量为原料总量的1.0%,反应温度为100-120 ℃,反应 时间为8h)下所得磷酸三甲苯酯的产率为85.5%。该催化剂易于回收且可重复使用 ,具有良好的活性稳定性。  相似文献   

10.
采用过量浸渍结合溶剂蒸发将磷钨杂多酸(TPA)分散于ZrO2气凝胶表面(TPA的质量分数为5%-45%), 再经750 °C空气气氛焙烧得到多钨酸盐修饰ZrO2固体酸催化剂. 借助N2吸附、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、氨程序升温脱附(NH3-TPD)和吡啶吸附红外(Py-IR)光谱对催化剂的结构及酸性质进行表征, 针对四氢呋喃(THF)开环聚合反应考察其酸催化性能. 研究发现, TPA与ZrO2之间较强的相互作用抑制了ZrO2的晶化, 同时也在一定程度上稳定了TPA的Keggin(凯金)-阴离子结构. 高温焙烧的催化剂中, 活性组分以ZrO2锚定的表面相(包括含有畸变或缺陷型Keggin单元的杂多酸盐及以Zr为杂原子的类杂多酸物种等)和TPA完全分解形成的氧化物体相存在, 各物种的相对量取决于TPA的负载量. 催化剂表面同时具有中等强度的布朗斯特德(Brönsted)酸与路易斯(Lewis)酸中心, 且初始TPA负载量为20%的催化剂实现了活性组分在载体表面的单层覆盖, 因而显示最大的总酸量, 对THF聚合反应也表现出最高的催化活性. 在反应温度为40 °C、时间为20 h条件下, 聚合物收率达30.9%±2%, 数均相对分子质量为2698±100; 在催化剂重复使用6次过程中, 活性未见明显降低.  相似文献   

11.
Keggin‐type heteropolyacid, H5BW12O40 (BWA) with a higher negative charge and stronger Brønsted acidity comparing to Si and P derivatives was used as an efficient, green, and reusable catalyst in a three‐component reaction involving the cyclocondensation of various β‐dicarbonyl compounds, differently substituted aromatic aldehydes and malononitrile in EtOH/H2O for the facile, clean, and high yielding synthesis of 4H‐pyrans. All reactions were completed in short times and the products were obtained in good to excellent yields. The reaction medium could be recycled and reused several times without any loss of efficiency.  相似文献   

12.
The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied.The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines.The reactions were performed under mild conditions and afforded the imines in high yield(up to 99%) without any byproducts other than H2O.The highest activity was obtained over 5 wt%Ag/Al2O3 in toluene with air as oxidant.The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H2 in the gas phase.The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis.  相似文献   

13.
A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.  相似文献   

14.
The reaction of PP(NO2) with M4(CO)12 (M = Co, Rh) gives the nitrido clusters [M6N(CO)15]? in 13 and 21% yields, respectively. A high yield synthesis (77%) of [Rh6N(CO)15)]? directly from Rh6(CO)16 and PPN(NO2) is also presented. PPN(NO2) reacts with Ir4(CO)12 to give the new isocyanato cluster, [Ir4(NCO)(CO)11]? in 34% yield, while the direct synthesis of this isocyanate product occurs in 77% yield from PPN(N3) and Ir4(CO)12. Modifications of published procedures for the preparation of [N(C2H5)4]2 [Ir6(CO)15] and Ir6(CO)16 are reported that allow shorter reaction times and give higher yields. The reaction of Ir6(CO)16 with one equivalent of PPN(NO2) generates a new cluster, PPN[Ir6(CO)15(NO)], in 57% yield which is proposed to contain a bent nitrosyl ligand. An additional equivalent of PPN(NO2) gives (PPN)2[Ir6(CO)15] in 84% yield with the evolution of N2O as well as CO2.  相似文献   

15.
A homogeneous catalyst system, Cr(C5H7O2)3–Al(C2H5)3, was used for the polymerization of methyl methacrylate. The yield of polymer increased up to an Al/Cr ratio of 12 and thereafter remained almost constant with increasing Al/Cr. The rate of polymerization increased linearly with increasing catalyst and monomer concentrations at Al/Cr = 12. The molecular weight, however, decreased with increasing catalyst concentration and increased with increasing monomer concentration, indicating anionic polymerization reaction. NMR studies of the polymers indicated the presence of a stereoblock structure, which changed to heteroblock structure in presence of triethylamine and hydroquinone as additives in the catalyst. In the light of these observations, the mechanism of the polymerization is discussed.  相似文献   

16.
《中国化学快报》2020,31(12):3233-3236
A versatile heteropoly acid (H3PMo12O40)-catalyzed coupling of diarylmethanols with epoxides was established for the synthesis of polyaryl-substituted aldehydes. Furthermore, the catalytic system was also suitable for the reaction of diarylmethanols and diols/aldehydes. The application of such an earth-abundant, readily accessible, and nontoxic catalyst provides a green approach for the construction of polyaryl-substituted aldehydes  相似文献   

17.
Biodiesel production from waste cooking oils over SO42-/Zr-SBA-15 catalyst was successfully carried out and investigated. SO42-/Zr-SBA-15 catalyst was prepared by one-step process using anhydrous zirconium nitrate as zirconium resource, and endowed with the strong Lewis acid sites formed by supporting the zirconium species onto the SBA-15 surface. The asprepared SO42-/Zr-SBA-15 showed excellent triglyceride conversion efficiency of 92.3% and fatty acid methyl esters (FAME) yield of 91.7% for the transesteriffication of waste cooking oil with methanol under the optimized reaction conditions: the methanol/oil molar ratio of 30, the reaction temperature of 160 oC, the reaction time of 12 h and 10wt% of catalyst. It was noticed that the as-prepared SO42-/Zr-SBA-15 materials with the higher area surface of mesoporous framework and the surface acidity displayed excellent stability and reusability, maintaining high FAME yield of (74±1)% after seven runs of reaction.  相似文献   

18.
A series of tungsten oxide-silica (WO3–SiO2) composite nanomaterials were synthesized through a novel, template-free sol-gel method, in which supercritical-CO2 (scCO2) was utilized as synthesis medium. The efficacy of the synthesis method stems from a tailored reactor design that allows the contact of the reactants only in the presence of scCO2. Selected synthetic parameters were screened with the purpose of enhancing the performance of the resulting materials as heterogeneous catalysts in epoxidation reactions with H2O2 as environmentally friendly oxidant. A cyclooctene conversion of 73% with epoxide selectivity of > 99% was achieved over the best WO3–SiO2 catalyst under mild reaction conditions (80 °C), equimolar H2O2 amount (1:1) and low WO3 loading (~2.5 wt%). The turnover number achieved with this catalyst (TON = 328), is significantly higher than that of a WO3–SiO2 prepared via a similar sol-gel route but without supercritical CO2, and that of commercial WO3. A thorough characterization with a combination of techniques (ICP-OES, N2-physisorption, XRD, TEM, STEM-EDX, SEM-EDX, FT-IR and Raman spectroscopy, XPS, TGA and FT-IR analysis of adsorbed pyridine) allowed correlating the physicochemical properties of the WO3–SiO2 nanomaterials with their catalytic performance. The high catalytic activity was attributed to: (i) the very high surface area (892 m2/g) and (ii) good dispersion of the W species acting as Lewis acid sites, which were both brought about by the synthesis in supercritical CO2, and (iii) the relatively low hydrophilicity, which was tuned by optimizing the tetramethyl orthosilicate concentration and the amount of basic solution used in the synthesis of the materials. Our optimum catalyst was also tested in the reaction of cyclohexene with H2O2, resulting in cyclohexane diol as main product due to the presence of strong Brønsted acid sites in the catalyst, whereas the reaction with limonene yielded the internal epoxide as the major product and the corresponding diol as side product. Importantly, the catalyst did not show leaching and could be reused in five consecutive runs without any decrease in activity.  相似文献   

19.
12-Tungstophosphoric heteropoly acid(TPA) with a Keggin structure was introduced into Al-incorporated mesoporous molecular sieves(AlSBA-15) by the incipient wetness method.The materials were characterized by X-ray diffraction,nitrogen adsorption,scanning electron microscopy,UV-Vis diffuse reflectance and Raman spectroscopy,which confirmed the Keggin and mesopore structure.Its catalytic activity was evaluated under solvent-free conditions in the liquid phase at 333-383 K for the propionylation of anisole with propionic anhydride.The catalysts used were AlSBA-15,10%,20%,and 40% TPA/AlSBA-15,and 20% TPA/MCM-48.In the propionylation of anisole with propionic anhydride,the substitution occurred predominantly at the para position.The 20% TPA/AlSBA-15 catalyst gave a total product yield of 48% with 98% selectivity towards 4-methoxypropiophenone.The regenerability of the catalyst was also studied and was found to be excellent.  相似文献   

20.
A rapid and simple procedure for the synthesis of the indenone derivatives, N-(1-oxo-1H-inden-2-yl)benzamides, via intramolecular Friedel-Crafts (IFC) reaction of (Z)-4-arylidene-2-phenyl-5(4)-oxazolones (azlactones) catalyzed by H3PW12O40 supported on neutral alumina under microwave irradiation has been developed. The reaction is straightforward and allows easy isolation of the product. The catalyst could be re-used up to four times after simple filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号