首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Electroanalysis》2017,29(8):1994-2000
Liver cancer is one of the most widely spread cancers in the world. Cancer stem cells (CSCs) are a small subpopulation of liver cancer cells that are thought to be responsible for relapse of cancer and the resistance to chemotherapy. Detection of CSCs is highly demanded for screening patients who are at high risk for developing metastatic cancers. However, the current methodologies for CSCs detection are sophisticated, expensive and not reliable. Here, we report the development of a label‐free impedance immunosensors for liver CSC quantification using four established CSC surface biomarkers (CD44, CD90, CD133/2 and OV‐6). The immunosensors were simply fabricated by the covalent attachment of four biomarkers specific antibodies on gold electrodes using cysteamine/phenylene isothiocyanate linker. Electrochemical impedance spectroscopy was employed to detect the binding of the cells to the immunosensors. The binding of the CSCs to the gold electrode surface retards the access of ferri‐ferrocyanide redox molecules to the electrode leading to enhancement in the charge transfer resistance (Rct) which represents the basis of the detection signal. The developed electrochemical immunosensors showed high sensitivity and selectivity for CSC detection with a wide linear range from 1 × 101 to 1× 104 cells/mL with a limit of detection of 1 cell/ml. This work represents a new, accurate, simple and low cost method for the detection of liver CSC that might help in the early diagnosis of metastatic disease and cancer relapse.  相似文献   

3.
Circulating tumor cells (CTCs) can be collected noninvasively and provide a wealth of information about tumor phenotype. For this reason, their specific and sensitive detection is of intense interest. Herein, we report a new, chip‐based strategy for the automated analysis of cancer cells. The nanoparticle‐based, multi‐marker approach exploits the direct electrochemical oxidation of metal nanoparticles (MNPs) to report on the presence of specific surface markers. The electrochemical assay allows simultaneous detection of multiple different biomarkers on the surfaces of cancer cells, enabling discrimination between cancer cells and normal blood cells. Through multiplexing, it further enables differentiation among distinct cancer cell types. We showcase the technology by demonstrating the detection of cancer cells spiked into blood samples.  相似文献   

4.
The ability to quantitate and visualize microRNAs (miRNAs) in situ in single cells would greatly facilitate the elucidation of miRNA‐mediated regulatory circuits and their disease associations. A toehold‐initiated strand‐displacement process was used to initiate rolling circle amplification of specific miRNAs, an approach that achieves both stringent recognition and in situ amplification of the target miRNA. This assay, termed toehold‐initiated rolling circle amplification (TIRCA), can be utilized to identify miRNAs at physiological temperature with high specificity and to visualize individual miRNAs in situ in single cells within 3 h. TIRCA is a competitive candidate technique for in situ miRNA imaging and may help us to understand the role of miRNAs in cellular processes and human diseases in more detail.  相似文献   

5.
A new electrochemical sequence‐specific DNA detection platform based on primer generation‐rolling circle amplification (PG‐RCA), methylene blue (MB) redox indicator, and indium tin oxide (ITO) electrode is reported. In the presence of a specific target sequence, PG‐RCA, an isothermal DNA amplification technique, produced large amounts of amplicons in an exponential manner. In addition to the standard components, the reaction mixture contained MB, which bound with the PG‐RCA amplicons. End‐point electrochemical measurement by differential pulse voltammetry (DPV) was performed using ITO electrode. The amplicon‐bound MB resulted in a lower DPV signal than free MB due to a smaller diffusion coefficient as well as electrostatic repulsion between the negatively charged amplicon‐bound MB and ITO electrode. With simple assay design (recognition probe) and instrumentation (operating temperature at 37 °C and ITO electrode without the need for probe immobilization), this detection platform is well suited for point‐of‐care and on‐site testing. Real‐time measurement was also achieved by pretreating the ITO electrode with bovine serum albumin.  相似文献   

6.
Isothermal exponential amplification techniques, such as strand‐displacement amplification (SDA), rolling circle amplification (RCA), loop‐mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase‐dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on‐site, point‐of‐care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.  相似文献   

7.
A cascade signal amplification strategy was proposed for detection of cancer cells at ultralow concentration by combining the rolling circle amplification (RCA) technique with oligonucleotide functionalized nanoparticles (NPs), and anodic stripping voltammetric detection. This flexible biosensing system exhibited high sensitivity and specificity with the detection limits of 10 Ramos cells mL(-1).  相似文献   

8.
The monitoring of cancer biomarkers is crucial to the early detection of cancer. However, a limiting factor in biomarker analysis is the ability to obtain the multilayered information of various biomarker molecules located at different parts of cells from the plasma membrane to the cytoplasm. A two‐stage dissociation nanoparticle system based on multifunctionalized polydopamine‐coated gold nanoparticles (Au@PDA NPs) is reported, which allows for the two‐stage imaging of cancer biomarkers in single cells. We demonstrate the feasibility of this strategy on sialic acids (SAs), p53 protein, and microRNA‐21 (miRNA‐21) in MCF‐7 breast cancer cells by two custom‐built probes. Furthermore, the multicolor fluorescence information extracted is used for the monitoring of biomarker expression changes under different drug combinations, which allows us to investigate the complex interactions between various cancer biomarkers and to describe the cancer biomarker‐synergic networks in single cells.  相似文献   

9.
《Electroanalysis》2017,29(3):662-675
An efficient electrochemical immunosensor can offer the potential for the detection of protein cancer biomarkers due to its high sensitivity, low cost and possible integration in compact analytical devices. In the last several years, researchers have developed various electrochemical immunoassay methods for the detection of protein cancer biomarkers. Significant progresses have been made in the study of electrochemical immunosensor that based on CNTs, especially in the fields of clinical screening and diagnosis of cancer field. This is because CNTs possess unique structural, mechanical and electronic properties that can decrease over‐potential and improve the sensitivity of electrochemical immunosensor. This paper reviews recent advances in the different modified strategies of constructing electrochemical immunosensor based on CNTs for detecting protein cancer biomarkers. CNTs or CNTs hybrid nanomaterials modified electrodes have been firstly introduced as the sensing platforms for the detection of protein cancer biomarkers. On the other hand, CNTs or functional CNTs used as labels in sandwich‐type electrochemical immunosensors have been systematically summarized. These novel strategies and the general principles could increase the sensitivity of the immunosensor, thereby overcoming the limitations of its application in the biosensing field.  相似文献   

10.
Breast cancer is one of the most critical threats to the health of women, and the development of new methods for early diagnosis is urgently required, so this paper reports a method to detect Michigan cancer foundation-7 (MCF-7) human breast cancer cells with considerable sensitivity and selectivity by using electrochemical technique. In this method, a mucin 1 (MUC1)-binding aptamer is adopted to recognize MCF-7 human breast cancer cells, while enzyme labeling is employed to produce amplified catalytic signals. The molecular recognition and the signal amplification are elaborately integrated by fabricating an aptamer–cell–aptamer sandwich architecture on an electrode surface, thus a biosensor for the detection of MCF-7 is fabricated based on the architecture. The detection range can be from 100 to 1 × 107 cells, and the detection limit can be as low as 100 cells. The method is also cost-effective and conveniently operated, implying potential help for the development of early diagnosis of breast cancer.  相似文献   

11.
《Electroanalysis》2017,29(10):2246-2253
Electrochemical aptasensors can detect cancer biomarkers such as mucin 1 (MUC1) to provide point‐of‐care diagnosis that is low‐cost, specific and sensitive. Herein, a DNA hairpin containing MUC1 aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self‐assembly. The fabrication process was characterized by scanning electron microscopy, X‐ray spectroscopy analysis and electrochemistry techniques. The results evidenced a stable and sensitivity sensor presenting wide linear detection range (0.65–110 ng/mL). Therefore, it was able to precisely detect MUC1 production patterns in normal (RWPE‐1) and prostate cancer cells (LNCaP and PC3). The biosensor has ability to detect MUC1 in complex samples being an efficient and useful platform for cancer diagnosing in early stages and for physiological applications such as cancer treatment monitoring.   相似文献   

12.
《Electroanalysis》2018,30(8):1584-1603
In cancer, screening and early detection are critical for the success of the patient's treatment and to increase the survival rate. The development of analytical tools for non‐invasive detection, through the analysis of cancer biomarkers, is imperative for disease diagnosis, treatment and follow‐up. Tumour biomarkers refer to substances or processes that, in clinical settings, are indicative of the presence of cancer in the body. These biomarkers can be detected using biosensors, that, because of their fast, accurate and point of care applicability, are prominent alternatives to the traditional methods. Moreover, the constant innovations in the biosensing field improve the determination of normal and/or elevated levels of tumour biomarkers in patients’ biological fluids (such as serum, plasma, whole blood, urine, etc.). Although several biomarkers (DNA, RNA, proteins, cells) are known, the detection of proteins and circulating tumour cells (CTCs) are the most commonly reported due to their approval as tumour biomarkers by the specialized entities and commonly accepted for diagnosis by medical and clinical teams. Therefore, electrochemical immunosensors and cytosensors are vastly described in this review, because of their fast, simple and accurate detection, the low sample volumes required, and the excellent limits of detection obtained. The biosensing strategies reported for the six most commonly diagnosed cancers (lung, breast, colorectal, prostate, liver and stomach) are summarized and the distinct phases of the sensors’ constructions (surface modification, antibody immobilization, immunochemical interactions, detection approach) and applications are discussed.  相似文献   

13.
A simple and highly sensitive electrochemical biosensor for microRNA (miRNA) detection was successfully developed by integrating a target‐assisted isothermal exponential amplification reaction (EXPAR) with enzyme‐amplified electrochemical readout. The binding of target miRNA with the immobilized linear DNA template generated a part duplex and triggered primer extension reaction to form a double‐stranded DNA. Then one of the DNA strands was cleaved by nicking endonuclease and extended again. The short fragments with the same sequence as the target miRNA except for the replacement of uridines and ribonucleotides with thymines and deoxyribonucleotides could be displaced and released. Hybridization of these released DNA fragments with other amplification templates and their extension on the templates led to target exponential amplification. Integrating with enzyme‐amplified electrochemical readout, the electrochemical signal decreases with the increasing target microRNA concentration. The method could detect miRNA down to 98.9 fM with a linear range from 100 fM to 10 nM. The fabrication and binding processes were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The specificity of the method allowed single‐nucleotide difference between miRNA family members to be discriminated. The established biosensor displayed excellent analytical performance toward miRNA detection and might present a powerful and convenient tool for biomedical research and clinic diagnostic application.  相似文献   

14.
15.
16.
An ultrasensitive surface‐enhanced Raman spectroscopy (SERS) sensor based on rolling‐circle amplification (RCA)‐increased “hot‐spot” was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core‐shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer‐by‐layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single‐stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10?12 to 1.0×10?8 M and a detection limit of 4.2×10?13 M , and showed good performance in real serum samples.  相似文献   

17.
《Electroanalysis》2018,30(3):517-524
We propose a separation/concentration‐signal‐amplification in‐one method based on electrochemical conversion (ECC) of magnetic nanoparticles (MNPs) to develop a facile and sensitive electrochemical biosensor for chloramphenicol (CAP) detection. Briefly, aptamer‐modified magnetic nanoparticles (MNPs‐Apt) was designed to capture CAP in sample, then the MNPs‐Apt composite was conjugated to Au electrode through the DNA hybridization between the unoccupied aptamer and a strand of complementary DNA. The ECC method was applied to transfer MNPs labels to electrochemically active Prussian blue (PB). The anodic and cathodic currents of PB were taken for signal readout. Comparing with conventional methods that require electrochemically active labels and related sophisticated labelling procedures, this method explored and integrated the magnetic and electrochemical properties of MNPs into one system, in turn realized magnetic capturing of CAP and signal generation without any additional conventional labels. Taking advantages of the high abundance of iron content in MNPs and the refreshing effect deriving from ECC process, the method significantly promoted the signal amplification. Therefore, the proposed biosensors exhibited linear detection range from 1 to 1000 ng mL−1 and a limit of detection down to 1 ng mL−1, which was better than or comparable with those of most analogues, as well as satisfactory specificity, storage stability and feasibility for real samples. The developed method may lead to new concept for rapid and facile biosensing in food safety, clinic diagnose/therapy and environmental monitoring fields.  相似文献   

18.
Shen  Bo  Li  Jianbo  Cheng  Wei  Yan  Yurong  Tang  Renkuan  Li  Yongguo  Ju  Huangxian  Ding  Shijia 《Mikrochimica acta》2015,182(1-2):361-367
Microchimica Acta - We report on a novel strategy for the electrochemical detection of cocaine. It is based on the use of a supramolecular aptamer, rolling circle amplification (RCA), and multiplex...  相似文献   

19.
Biomarkers are described as characteristics that provide information about biological conditions whether normal or pathological. Detection of biomarkers at the earliest stage of the cancer is of utmost importance for clinical diagnosis. Electrochemical biosensors allow detecting the low levels of specific analytes in blood, urine or saliva and providing a sensitive approach for direct measurement for cancer biomarker detection. Moreover, the integration of electrochemical devices with nanomaterials, such as carbon nanotubes, gold and magnetic particles offer amplification and multiplexing capabilities for simultaneous measurements of cancer biomarkers very sensitively. This review summarizes the recent developments of electrochemical biosensors systems for the detection of cancer biomarkers with emphasis on voltammetric, amperometric and impedimetric biosensors. A special attention is paid to aptamers and miRNAs that are very promising for the ultra‐sensitive and specific cancer biomarker detection.  相似文献   

20.
Human telomerase is a polymerase enzyme that adds tandem repeats of DNA (TTAGGG) in the telomeric region to the ends of chromosomes. Since telomerase can be detected in immortalized, but not normal, somatic cells, it has been considered a selective target for cancer chemotherapy. Here, we describe a DNAzyme‐based probe to detect the presence of telomerase in cell lysates. Telomerase elongates the primer site on the probe. Subsequent addition of the PbII cofactor activates the DNAzyme, which cleaves the elongated fragment at the RNA site, releasing the probe for repetitive cycling and signal amplification. The cleaved fragment is detected by a reporter molecular beacon. Enzymatic amplification with rapid turnover allows detection of telomerase in the range of 0.1 to 1 μg cell lysate, with a fivefold increase in signal level for cancer cells over normal cells. This probe design can provide a simple, yet rapid and sensitive, measurement of telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号