首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the great significance of microRNAs (miRNAs) in cancer detection and typing, the development of sensitive, specific, quantitative, and low-cost methods for the assay of expression levels of miRNAs is desirable. We describe a highly efficient amplification platform for ultrasensitive analysis of miRNA (taking let-7a miRNA as a model analyte) based on a dumbbell probe-mediated cascade isothermal amplification (DP-CIA) strategy. The method relies on the circularization of dumbbell probe by binding target miRNA, followed by rolling circle amplification (RCA) reaction and an autonomous DNA machine performed by nicking/polymerization/displacement cycles that continuously produces single-stranded G-quadruplex to assemble with hemin to generate a color signal. In terms of the high sensitivity (as low as 1 zmol), wide dynamic range (covering 9 orders of magnitude), good specificity (even single-base difference) and easy operation (one probe and three enzymes), the proposed label-free assay is successfully applied to direct detection of let-7a miRNA in real sample (total RNA extracted from human lung tissue), demonstrating an attractive alternative for miRNA analysis for gene expression profiling and molecular diagnostics, particularly for early cancer diagnosis.  相似文献   

2.
We rationally engineered an elegant entropy‐driven DNA nanomachine with three‐dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy‐driven catalytic reaction of intramolecular toehold‐mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye‐labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction‐based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity‐induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells.  相似文献   

3.
Isothermal exponential amplification techniques, such as strand‐displacement amplification (SDA), rolling circle amplification (RCA), loop‐mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase‐dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on‐site, point‐of‐care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.  相似文献   

4.
The importance of microRNA (miRNA) dysregulation for the development and progression of diseases and the discovery of stable miRNAs in peripheral blood have made these short‐sequence nucleic acids next‐generation biomarkers. Here we present a fully homogeneous multiplexed miRNA FRET assay that combines careful biophotonic design with various RNA hybridization and ligation steps. The single‐step, single‐temperature, and amplification‐free assay provides a unique combination of performance parameters compared to state‐of‐the‐art miRNA detection technologies. Precise multiplexed quantification of miRNA‐20a, ‐20b, and ‐21 at concentrations between 0.05 and 0.5 nM in a single 150 μL sample and detection limits between 0.2 and 0.9 nM in 7.5 μL serum samples demonstrate the feasibility of both high‐throughput and point‐of‐care clinical diagnostics.  相似文献   

5.
6.
《Analytical letters》2012,45(8):1199-1216
Rolling circle amplification is an isothermal method for amplifying DNA. The technique rapidly synthesizes a long (more than 1000 bases), linear, tandemly-repetitive single-stranded DNA chain by a short (less than 100 bases long) circular template. The reaction may proceed in either linear or exponential amplification modes and may provide copies of the circle up to 104-fold. The robustness, speed, and sensitivity of the rolling circle amplification strategies have gained widespread application in DNA and protein assays, single nucleotide polymorphism, in situ signal amplification, drug discovery, and nanotechnology.  相似文献   

7.
In this review,the most recent progresses in the field of fluorescence signal amplification strategies based on DNA nanotechnology for miRNA are summarized.The types of signal amplification are given and the principles of amplification strategies are explained,including rolling circle amplification(RCA),catalytic hairpin assembly(CHA),hybridization chain reaction(HCR)and DNA walker.Subsequently,the application of these signal amplification methods in biosensing and bioimaging are covered and described.Finally,the challenges and the outlook of fluorescence signal amplification methods for miRNA detection are briefly commented.  相似文献   

8.
One‐nucleotide differences in microRNAs (miRNAs) can be discriminated in an assay based on a branched rolling‐circle amplification (BRCA) reaction and fluorescence quantification. With the proposed method miRNA can be detected at concentrations as low as 10 fM , and the miRNA in a total RNA sample of a few nanograms can be determined.

  相似文献   


9.
We report a generalizable strategy for biosensing that takes advantage of the resistance of DNA aptamers against nuclease digestion when bound with their targets, coupled with toehold mediated strand displacement (TMSD) and rolling circle amplification (RCA). A DNA aptamer containing a toehold extension at its 5′-end protects it from 3′-exonuclease digestion by phi29 DNA polymerase (phi29 DP) in a concentration-dependent manner. The protected aptamer can participate in RCA in the presence of a circular template that is designed to free the aptamer from its target via TMSD. The absence of the target leads to aptamer digestion, and thus no RCA product is produced, resulting in a turn-on sensor. Using two different DNA aptamers, we demonstrate rapid and quantitative real-time fluorescence detection of two human proteins: platelet-derived growth factor (PDGF) and thrombin. Sensitive detection of PDGF was also achieved in human serum and human plasma, demonstrating the selectivity of the assay.  相似文献   

10.
MicroRNAs (miRNAs), a kind of single‐stranded small RNA molecules, play a crucial role in physiological and pathological processes in human beings. We describe here the detection of miRNA, by side‐by‐side self‐assembly of plasmonic nanorod dimers in living cells, which gives rise to a distinct intense chiroplasmonic response and surface‐enhanced Raman scattering (SERS). The dynamic assembly of chiral nanorods was confirmed by fluorescence resonance energy transfer (FRET), also in living cells. Our study provides insights into in situ self‐assembly of plasmonic probes for the real‐time measurement of biomarkers in living cells. This could improve the current understanding of cellular RNA–protein complexes, pharmaco‐genomics, and genetic diagnosis and therapies.  相似文献   

11.
Compared with other types of breast cancer, triple-negative breast cancer(TNBC) has the characteristics of a high degree of malignancy and poor prognosis. Early diagnosis of TNBC through biological markers and timely development of effective treatment methods can reduce its mortality. Many Research experiments have confirmed that some specific mi RNA expression profiles in TNBC can used as markers for early diagnosis. However, detecting the expression profiles of multiple groups of miRNAs accord...  相似文献   

12.
A novel three‐dimensional (3D) superstructure based on the growth and origami folding of DNA on gold nanoparticles (AuNPs) was developed. The 3D superstructure contains a nanoparticle core and dozens of two‐dimensional DNA belts folded from long single‐stranded DNAs grown in situ on the nanoparticle by rolling circle amplification (RCA). We designed two mechanisms to achieve the loading of molecules onto the 3D superstructures. In one mechanism, ligands bound to target molecules are merged into the growing DNA during the RCA process (merging mechanism). In the other mechanism, target molecules are intercalated into the double‐stranded DNAs produced by origami folding (intercalating mechanism). We demonstrated that the as‐fabricated 3D superstructures have a high molecule‐loading capacity and that they enable the high‐efficiency transport of signal reporters and drugs for cellular imaging and drug delivery, respectively.  相似文献   

13.
《中国化学快报》2022,33(4):2101-2104
Exosomal microRNA (miRNA) is an ideal candidate of noninvasive biomarker for the early diagnosis of cancer. Sensitive and accurate sensing of abnormal exosomal miRNA plays essential role for clinical promotion due to its close correlation with tumor proliferation and progression. Herein, a microfluidic surface-enhanced Raman scattering (SERS) sensor was proposed for an on-line detection of exosomal miRNA based on rolling circle amplification (RCA) and tyramine signal amplification (TSA) strategy. The microfluidic chip consists of a magnetic enrichment chamber, a serpentine fluidic mixer and a plasmonic SERS substrate functionalized with capture probes. The released miRNA activates the capture probe, triggers RCA reaction, and generates a large number of single-stranded DNA products to drive the catalysis of nanotags deposition via TSA, producing numerous “hot spots” to enhance the SERS signals. In merit of the microfluidics chip and nucleic acid-tyramine cascade amplification, the developed SERS sensor significantly improves the sensitivity for the exosomal miRNA assay, resulting in a limit of detection (LOD) as low as 1 pmol/L and can be successfully applied in the analysis of exosomes secreted from breast tumor cells, which demonstrates the potential utility in practical applications.  相似文献   

14.
15.
Simultaneous detection of various intracellular biomarkers is promising for early diagnosis and treatment of cancer. Herein, we develop a novel method for high specific and ultrasensitive detection of liver cancer cell‐involved mRNAs: TK1 and c‐myc based on the split primer ligation‐triggered 8‐17 DNAzyme assisted cascade rolling circle amplification. Only two targets exist simultaneously, can trigger the rolling circle amplification to improve the accuracy and sensitivity. Meanwhile, an electrochemical molecular beacon, based on the host‐guest recognition between ferrocene groups and cucurbit urils [7] (CB[7]/Fc‐MB), is used to cause a “turn‐off” electrochemical signal which is decreased by disrupting its hairpin structure. Under the optimal conditions, the detection limit of TK1 and c‐myc mRNA is as low as 0.06 nM. Moreover, this method can be used to detect the TK1 and c‐myc mRNA in HepG2 cells and distinguish between cancer cells and their normal cells, proving that the method has the potential to detect the variation of biomarkers in vivo.  相似文献   

16.
Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low‐abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal‐to‐background ratio of conventional molecular imaging probes. Herein, we report a class of DNA‐templated gold nanoparticle (GNP)–quantum dot (QD) assembly‐based probes for catalytic imaging of cancer‐related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA‐programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non‐catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells.  相似文献   

17.
Imaging of microRNA (miRNA) in living cells could facilitate the monitoring of the expression and distribution of miRNA and research on miRNA-related diseases. Given the low expression levels and even down-regulation of cellular miRNA that is associated with some diseases, enzyme-free amplification strategies are imperative for intracellular miRNA assay. In this work, we report an entropy-driven reaction for amplification assay miRNA with a detection limit of 0.27 pM. The resulting signal amplification provides excellent recognition and signal enhancement of specific miRNAs in living cells. This method supplies accurate information regarding cellular miRNA-related biological events and provides a new tool for highly sensitive and simultaneous imaging of multiple low-level biomarkers, thereby improving the accuracy of early disease diagnosis.  相似文献   

18.
There is an urgent need for development of rapid and inexpensive techniques for detection of microRNAs (miRNAs), which are potential biomarkers of various types of cancer. In this paper, we describe a multiplexed electrochemical platform for determination of three cancer‐relevant miRNAs: miR‐21, let‐7a and miR‐31. The strategy combines the use of magnetic beads (MBs) modified with a commercial antibody for the efficient capture of the heteroduplexes formed by hybridization of the target miRNA with DNA probe. Free non‐hybridized region of the DNA probe was thereafter hybridized with two biotin‐labeled auxiliary DNA probes in a process of hybridization chain reaction (HCR), resulting in a long hybrid bearing a large number of biotin molecules. Labeling of these multiple biotin units with streptavidin‐peroxidase conjugates allowed an amplification of the amperometric signal measured after capturing the modified MBs at a screen‐printed carbon electrode array of eight electrodes. The combined strategy demonstrated in a similar assay time significantly higher sensitivity than those previously described using modified MBs with the same capture antibody (without amplification by HCR) or a HCR strategy implemented on the surface of MBs, respectively. The methodology exhibits a good selectivity for discriminating single mismatches and was applied to the determination of the three target miRNAs in total RNA (RNAt) extracted from various cancer cell lines and from cervical precancerous lesions.  相似文献   

19.
20.
Micro‐RNAs (miRNAs) are small, endogenous, singlestranded, and noncoding RNAs. The miRNAs have been found to perform important functions in many cellular processes, such as development, proliferation, differentiation, and apoptosis. Circulating miRNAs have been proposed as emerging biomarkers in diseases such as cancer, diabetes, and cardiovascular disease including acute myocardial infarction (AMI). In this study, we developed CE with LIF (CE‐LIF) using fluorescence‐labeled DNA probe for determination of low abundance miRNA in cell extracts. The target miRNA is miRNA‐499, a biomarker candidate of AMI with low abundance in biological samples. In order to measure the trace level of miRNA, we optimized the hybridization conditions such as hybridization time, temperature, and buffer solution. The highest fluorescence intensity of the hybridized miRNA‐499 was found when hybridization was conducted at 40°C in 50 mM Tris‐acetate (pH 8.0) buffer containing 50 mM NaCl, and 10 mM EDTA for 15 min. The hybridized miRNA‐499 was detected in cultured H9c2 cardiomyoblast cells and the analysis of miRNA‐499 was completed within 1 h using CE‐LIF. These results showed the potential of CE for fast, specific, and sensitive high‐throughput analysis of low‐abundance miRNAs in cell extracts, biofluids, and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号