首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Copper- and copper oxide–based materials are, in principle, promising components (supports, reactive sites, and visible light–absorbing semiconductors) of electrocatalysts and photocathodes for reduction of carbon dioxide. Electrochemical and photoelectrochemical approaches are generally suitable for the low-temperature CO2-conversion to carbon-based simple organic fuels or utility chemicals.Different concepts of utilization, including nanostructuring, doping, admixing, preconditioning, modification, or functionalization of various copper- and copper oxide–based systems for catalytic electroreduction and photoelectrochemical reduction of CO2 are elucidated, as well as important strategies to enhance the systems' overall activity and stability are discussed.  相似文献   

2.
Through our newly-developed “chemical vapor deposition integrated process (CVD-IP)” using carbon dioxide (CO2) as the raw material and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.  相似文献   

3.
The use of carbon dioxide as a raw material for chemical syntheses is an ecologically and economically valuable extension to the carbon sources used at the present time. In order to convert the thermodynamically stable and comparatively unreactive CO2 molecule into the desired product in an efficient manner, suitable reaction conditions and activation mechanisms must be found. The catalytic reduction of CO2 to formic acid and its derivatives has been intensively studied in recent years. A number of new approaches to the synthesis of formic acid from CO2 have reached such a state of knowledge that continuing development may well lead to industrial-scale operation in the near future. This can to a large extent be attributed to the fruitful interaction between investigative work into reaction mechanisms and the development of new catalytic systems.  相似文献   

4.
Converting carbon dioxide (CO2) into high-value fuels or chemicals is considered as a promising way to utilize CO2 and alleviate the excessive greenhouse gas emission. Among multiple catalysis approaches, electrochemical reduction of CO2 to ethanol has an important prospect due to the high energy density and widely applications of ethanol. In recent years, many electrocatalysts for CO2 reduce reaction (CO2RR) have shown promising catalytic activity for ethanol production. In this review, we will introduce the recent progress in this field. The basic principles and electrochemical performances of CO2RR are reviewed at first. Then, several categories of active electrocatalysts for CO2RR to ethanol are summarized, including the discussion of reaction mechanism and catalytic sites. Finally, several possible strategies are proposed, providing guidance for future design and preparation of high-performance catalysts.  相似文献   

5.
With access to cheap, sustainable electricity, electrocatalysis is a promising technology for converting electric power into storable chemical fuels or value-added chemical compounds. This has sparked the development of electrocatalysts that need to operate at high product selectivity and high energy efficiency. Electrocatalytic alcohol oxidation, oxygen activation and nitrogen and carbon dioxide (CO2) reduction are examples of reactions with a huge industrial potential. Notably, electrocatalytic reduction of CO2 has recently developed as a favourable pathway to convert this greenhouse gas into value-added chemicals and fuels. Earth-abundant metals stabilized by carbon/nitrogen macrocycle ligands are well-known efficient and selective catalysts for the electrochemical reduction of CO2 in homogeneous conditions. Recently, such catalysts have also been used in supported conditions and implemented in flow cell electrolyzers, showing promising performances. This review provides a synopsis for the evolution of CO2 electrolyzers using molecular catalysts.  相似文献   

6.
《中国化学快报》2023,34(2):107420
The conversion of carbon dioxide into useful fuels or chemical feedstocks is of great importance for achieving carbon emission peak and carbon neutrality. The harvesting and conversion of solar energy will provide a sustainable and environmentally friendly energy source for human production and living. Very recently, photothermal catalysis has been proved to exhibit great advantages in reducing the reaction temperature, promoting the catalytic activity, and manipulating the reaction pathway in comparison with traditional thermal catalysis. In this review, we firstly introduced the fundamental mechanisms and categories of photothermal catalysis to understand the synergy or the difference between photochemical and thermochemical reaction pathways. Subsequently, the criteria and strategies for photothermal catalyst design are discussed in order to inspire the development of high-efficiency photothermal catalytic route by achieving intense absorption of broadband solar energy spectrum and high conversion capability of solar-to-heat. Recent progress in CO2 reduction achieved by photothermal catalysis was summarized in terms of production types. In the end, the future challenges and perspectives of photothermal catalytic CO2 reduction are presented. We hope that this review will not only deepen the understanding of photothermal catalysis, but also inspire the design, preparation and application of high-performance photothermal catalysts, aiming at alleviating non-renewable fossil energy consumption and carbon emissions for early carbon emission peak and carbon neutrality.  相似文献   

7.
One of the most effective ways to cope with the problems of global warming and the energy shortage crisis is to develop renewable and clean energy sources. To achieve a carbon-neutral energy cycle, advanced carbon sequestration technologies are urgently needed, but because CO2 is a thermodynamically stable molecule with the highest carbon valence state of +4, this process faces many challenges. In recent years, electrochemical CO2 reduction has become a promising approach to fix and convert CO2 into high-value-added fuels and chemical feedstock. However, the large-scale commercial use of electrochemical CO2 reduction systems is hindered by poor electrocatalyst activity, large overpotential, low energy conversion efficiency, and product selectivity in reducing CO2. Therefore, there is an urgent need to rationally design highly efficient, stable, and scalable electrocatalysts to alleviate these problems. This minireview also aims to classify heterogeneous nanostructured electrocatalysts for the CO2 reduction reaction (CDRR).  相似文献   

8.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

9.
向担载镍基催化剂NiMgAl中添加助剂(Co,Ir或Pt)制备了三种助剂促进型催化剂,通过氢气程序升温还原(H2-TPR),CO2/CH4程序升温表面反应(CO2/CH4-TPSR)和CO2程序升温脱附(CO2-TPD)等方法对催化剂进行表征.助剂对催化剂性能的影响通过甲烷干重整实验进行评价.添加少量的Pt或Ir助剂可以降低Ni活性组分的还原温度和提高反应性能.添加助剂的样品与原始NiMgAl催化剂相比能够降低反应的活化能,添加Co或Ir助剂的催化剂与NiMgAl催化剂相比活化能有了明显的降低.NiMgAl催化剂的活化能为51.8 kJ·mol-1,添加Pt助剂的NiPtMgAl催化剂活化能降至26.4 kJ·mol-1.NiMgAl催化剂中添加Pt助剂制备的催化剂具有较好的催化活性和较低的活化能.CH4-TPSR和CO2-TPSR结果表明添加Pt助剂可以在更低的温度下(与NiMgAl催化剂相比)提高CH4的活化能力,并在催化剂表面形成更多的碳物种.CO2-TPD结果显示,添加助剂的催化剂与NiMgAl样品相比在反应温度区间内增加了CO2的吸附/脱附量.  相似文献   

10.
Electrochemical reduction of carbon dioxide has been attracting extensive interest due to its fundamental significance both in environmental protection and in energy storage. In this review, recent progress in the manipulation of the catalytic activity and selectivity of various transition metals towards CO2 reduction reaction (CO2RR) is summarized within the context of deliberate surface functionalization by select organic ligands. This is primarily manifested in three effects, interfacial charge transfer, suppression of hydrogen evolution, and stabilization of key reaction intermediates. The review is concluded with a perspective of the challenges and promises in the structural engineering of metal catalysts for enhanced CO2RR performance.  相似文献   

11.
Utilization of carbon dioxide as a soft oxidant for the catalytic dehydrogenation of ethylbenzene (CO2-EBDH) has been recently attempted to explore a new technology for producing styrene selectively. This article summarizes the results of our recent attempts to develop effective catalyst systems for the CO2-EBDH on the basis of alumina-supported vanadium oxide catalysts. Its initial activity and on-stream stability were essentially improved by the introduction of antimony oxide as a promoter into the alumina-supported catalyst. Insertion of zirconium oxide into alumina support substantially increased the catalytic activity. Modification of alumina with magnesium oxide yielded an increase of catalyst stability of alumina-supported V–Sb oxide due to the coking suppression. Carbon dioxide has been confirmed to play a beneficial role of selective oxidant in improving the catalytic performance through the oxidative pathway, avoiding excessive reduction and maintaining desirable oxidation state of vanadium ion (V5+). The positive effect of carbon dioxide in dehydrogenation reactions of several alkylbenzenes such as 4-diethylbenzene, 4-ethyltoluene, and iso- and n-propylbenzenes was also observed. Along with the easier redox cycle between fully oxidized and partially reduced vanadium species, the optimal surface acidity of the catalyst is also responsible for achieving high activity and catalyst stability. It is highlighted that supra-equilibrium EBDH conversions were obtained over alumina-supported V–Sb oxide catalyst in CO2-EBDH as compared with those in steam-EBDH in the absence of carbon dioxide.  相似文献   

12.
The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon‐based fuels or attractive feedstock. Single‐atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen‐anchored Zn single‐atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FECO) up to 95 % at ?0.43 V), remarkable durability (>75 h without decay of FECO), and large turnover frequency (TOF, up to 9969 h?1). Further experimental and DFT results indicate that the four‐nitrogen‐anchored Zn single atom (Zn‐N4) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate‐limiting step.  相似文献   

13.
A series of N ‐heterocyclic carbene (NHC)/Ag systems were developed for the carboxylative assembly of propargylic alcohols and carbon dioxide (CO2). With the catalysis of these catalytic systems, a variety of target α‐alkylidene cyclic carbonates could be obtained smoothly under atmospheric CO2 pressure in straightforward one‐pot processes. Particularly, these reactions could be performed without any stoichiometric addition of bases or additives. Further mechanistic investigation reveals that the excellent activities are attributed to the effective activations of CO2 accomplished by the NHCs via the formation of the NHC‐CO2 adducts.  相似文献   

14.
《化学:亚洲杂志》2018,13(19):2800-2804
Here we report a partially oxidized palladium nanodot (Pd/PdOx) catalyst with a diameter of around 4.5 nm. In aqueous CO2‐saturated 0.5 m KHCO3, the catalyst displays a Faradaic efficiency (FE) of 90 % at −0.55 V vs. reversible hydrogen electrode (RHE) for carbon monoxide (CO) production, and the activity can be retained for at least 24 h. The improved catalytic activity can be attributed to the strong adsorption of CO2.− intermediate on the Pd/PdOx electrode, wherein the presence of Pd2+ during the electroreduction reaction of CO2 may play an important role in accelerating the carbon dioxide reduction reaction (CO2RR). This study explores the catalytic mechanism of a partially oxidized nanostructured Pd electrocatalyst and provides new opportunities for improving the CO2RR performance of metal systems.  相似文献   

15.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN?), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN? or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C? C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN?, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

16.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

17.
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2.  相似文献   

18.
The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.  相似文献   

19.
Benzil,1,2-diphenylethane-1,2-dione, was used as an excellent electrocatalyst for reduction of carbon dioxide, CO_2. The reduction overpotential of CO_2 was reduced about 900 m V in the presence of a benzil mediator. The chemical reaction of the product of the electrocatalytic reduction of CO_2,(activated CO_2,CO_2~(·-)) with pyridine at a glassy carbon electrode, GCE, surface and in an acetonitrile-But_4NClO_4 solution was investigated by cyclic voltammetry, chronoamperometry and controlled potential coulometry.By chronoamperometry, the catalytic rate constant, k, for the electron transfer between benzil and CO_2 was obtained as 8.1 ± 0.4 M~(-1)s~(-1). The results indicate that pyridine has a strong interaction with the activated CO_2. The coulometry method was used to obtain the product of the pyridine chemical reaction with CO_2~(·-). The spectral characterizations of FTIR,~1H and ~(13)C NMR of the coulometry experiment product proved that the pyridine anion radical, Py~(·-), was carboxylated by CO_2~(·-), and isonicotinic acid is the final major product.  相似文献   

20.
Electrochemical reduction of carbon dioxide (CO2) to valuable organic compounds is promising as to recycling of carbon source of CO2 and technical compatibility with systems using renewable energy resources. In recent years, considerable efforts have been devoted to the research field of CO2 conversion using electrocatalysis. This personal account particularly focuses on the recent progress that has been achieved by the Ertl Center and a number of groups in South Korea that becomes one of the larger CO2 emitters. The research trends of catalyst development divided into different categories according to the primary products are presented first. Afterwards, several studies on theoretical calculations and electrolytic reactors are reviewed taking into account the fundamental understanding and feasibility of the CO2 electroreduction. Finally, a perspective on the challenges and needs in achieving the advanced level of research and development is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号