首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN?), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN? or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C? C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN?, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

2.
Cobalt ferrite (CoFe2O4) spinel has been found to produce C2−C4 hydrocarbons in a single-step, ambient-pressure, photocatalytic hydrogenation of CO2 with a rate of 1.1 mmol g−1 h−1, selectivity of 29.8 % and conversion yield of 12.9 %. On stream the CoFe2O4 reconstructs to a CoFe−CoFe2O4 alloy-spinel nanocomposite which facilitates the light-assisted transformation of CO2 to CO and hydrogenation of the CO to C2−C4 hydrocarbons. Promising results obtained from a laboratory demonstrator bode well for the development of a solar hydrocarbon pilot refinery.  相似文献   

3.
Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN) ligands. Extrinsic CO and CN, however, inhibit hydrogenases. The mechanism by which CN binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Å allowed us to distinguish intrinsic CN and CO ligands and to show that extrinsic CN binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.  相似文献   

4.
We report the unprecedented electrocatalytic activity of a series of molecular nickel thiolate complexes ( 1 – 5 ) in reducing CO2 to C1–3 hydrocarbons on carbon paper in pH-neutral aqueous solutions. Ni(mpo)2 ( 3 , mpo=2-mercaptopyridyl-N-oxide), Ni(pyS)3 ( 4 , pyS=2-mercaptopyridine), and Ni(mp)2 ( 5 , mp=2-mercaptophenolate) were found to generate C3 products from CO2 for the first time in molecular complex. Compound 5 exhibits Faradaic efficiencies (FEs) of 10.6 %, 7.2 %, 8.2 % for C1, C2, C3 hydrocarbons respectively at −1.0 V versus the reversible hydrogen electrode. Addition of CO to the system significantly promotes the FEC1–C3 to 41.1 %, suggesting that a key Ni−CO intermediate is associated with catalysis. A variety of spectroscopies have been performed to show that the structures of nickel complexes remain intact during CO2 reduction.  相似文献   

5.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   

6.
Vaska‐type complexes, i.e. trans‐[RhX(CO)(PPh3)2] (X is a halogen or pseudohalogen), undergo a range of reactions and exhibit considerable catalytic activity. The electron density on the RhI atom in these complexes plays an important role in their reactivity. Many cyanotrihydridoborate (BH3CN) complexes of Group 6–8 transition metals have been synthesized and structurally characterized, an exception being the rhodium(I) complex. Carbonyl(cyanotrihydridoborato‐κN)bis(triphenylphosphine‐κP)rhodium(I), [Rh(NCBH3)(CO)(C18H15P)2], was prepared by the metathesis reaction of sodium cyanotrihydridoborate with trans‐[RhCl(CO)(PPh3)2], and was characterized by single‐crystal X‐ray diffraction analysis and IR, 1H, 13C and 11B NMR spectroscopy. The X‐ray diffraction data indicate that the cyanotrihydridoborate ligand coordinates to the RhI atom through the N atom in a trans position with respect to the carbonyl ligand; this was also confirmed by the IR and NMR data. The carbonyl stretching frequency ν(CO) and the carbonyl carbon 1JC–Rh and 1JC–P coupling constants of the Cipso atoms of the triphenylphosphine groups reflect the diminished electron density on the central RhI atom compared to the parent trans‐[RhCl(CO)(PPh3)2] complex.  相似文献   

7.
The dissociative photoionization of molecular‐beam cooled CH2CO in a region of ?10–20 eV was investigated with photoionization mass spectrometry using a synchrotron radiation as the light source. Photoionization efficiency curves of CH2CO+ and of observed fragment ions CH2+, CHCO+, HCO+, C2O+, CO+, and C2H2+ were measured to determine their appearance energies. Relative branching ratios as a function of photon energy were determined. Energies for formation of these observed fragment ions and their neutral counterparts upon ionization of CH2CO are computed with the Gaussian‐3 method. Dissociative photoionization channels associated with six observed fragment ions are proposed based on comparison of determined appearance energies and predicted energies. The principal dissociative processes are direct breaking of C=C and C‐H bonds to form CH2+ + CO and CHCO+ + H, respectively; at greater energies, dissociation involving H migration takes place.  相似文献   

8.
Solar-driven CO2 hydrogenation into multi-carbon products is a highly desirable, but challenging reaction. The bottleneck of this reaction lies in the C−C coupling of C1 intermediates. Herein, we construct the C−C coupling centre for C1 intermediates via the in situ formation of Co0−Coδ+ interface double sites on MgAl2O4 (Co−CoOx/MAO). Our experimental and theoretical prediction results confirmed the effective adsorption and activation of CO2 by the Co0 site to produce C1 intermediates, while the introduction of the electron-deficient state of Coδ+ can effectively reduce the energy barrier of the key CHCH* intermediates. Consequently, Co−CoOx/MAO exhibited a high C2–4 hydrocarbons production rate of 1303 μmol g−1 h−1; the total organic carbon selectivity of C2–4 hydrocarbons is 62.5 % under light irradiation with a high ratio (≈11) of olefin to paraffin. This study provides a new approach toward the design of photocatalysts used for CO2 conversion into C2+ products.  相似文献   

9.
Electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon products (C2+) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C−C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) – thus breaking the K+ solubility limit (3.5 M) – which enables a highly efficient CO2RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+) can be achieved at 1400 mA.cm−2, simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.  相似文献   

10.
Nitrogen‐doped carbon materials (N‐Cmat) are emerging as low‐cost metal‐free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well‐defined N‐Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in‐situ‐generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm?2 at ?0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N‐Cmat, which may guide the exploration of cost‐effective electrocatalysts for efficient CO2 reduction.  相似文献   

11.
Artificial photosynthesis is a promising strategy for converting carbon dioxide (CO2) and water (H2O) into fuels and value-added chemical products. However, photocatalysts usually suffered from low activity and product selectivity due to the sluggish dynamic transfer of photoexcited charge carriers. Herein, we describe anchoring of Ag single atoms on hollow porous polygonal C3N4 nanotubes (PCN) to form the photocatalyst Ag1@PCN with Ag−N3 coordination for CO2 photoreduction using H2O as the reductant. The as-synthesized Ag1@PCN exhibits a high CO production rate of 0.32 μmol h−1 (mass of catalyst: 2 mg), a high selectivity (>94 %), and an excellent stability in the long term. Experiments and density functional theory (DFT) reveal that the strong metal–support interactions (Ag−N3) favor *CO2 adsorption, *COOH generation and desorption, and accelerate dynamic transfer of photoexcited charge carriers between C3N4 and Ag single atoms, thereby accounting for the enhanced CO2 photoreduction activity with a high CO selectivity. This work provides a deep insight into the important role of strong metal–support interactions in enhancing the photoactivity and CO selectivity of CO2 photoreduction.  相似文献   

12.
The molybdenum and vanadium nitrogenases are two homologous enzymes with distinct structural and catalytic features. Previously, it was demonstrated that the V nitrogenase was nearly 700 times more active than its Mo counterpart in reducing CO to hydrocarbons. Herein, a similar discrepancy between the two nitrogenases in the reduction of CO2 is reported, with the V nitrogenase being capable of reducing CO2 to CO, CD4, C2D4, and C2D6, and its Mo counterpart only capable of reducing CO2 to CO. Furthermore, it is shown that the V nitrogenase may direct the formation of CD4 in part via CO2‐derived CO, but that it does not catalyze the formation of C2D4 and C2D6 along this route. The exciting observation of a V nitrogenase‐catalyzed C? C coupling with CO2 as the origin of the building blocks adds another interesting reaction to the catalytic repertoire of this unique enzyme system. The differential activities of the V and Mo nitrogenases in CO2 reduction provide an important framework for systematic investigations of this reaction in the future.  相似文献   

13.
The halide anions present in the electrolyte improve the Faradaic efficiencies (FEs) of the multi-hydrocarbon (C2+) products for the electrochemical reduction of CO2 over copper (Cu) catalysts. However, the mechanism behind the increased yield of C2+ products with the addition of halide anions remains indistinct. In this study, we analysed the mechanism by investigating the electronic structures and computing the relative free energies of intermediates formed from CO2 to C2H4 on the Cu (100) facet based on density functional theory (DFT) calculations. The results show that formyl *CHO from the hydrogenation reaction of the adsorbed *CO acts as the key intermediate, and the C−C coupling reaction occurs preferentially between *CHO and *CO with the formation of a *CHO-CO intermediate. We then propose a free-energy pathway of C2H4 formation. We find that the presence of halide anions significantly decreases the free energy of the *CHOCH intermediate, and enhances desorption of C2H4 in the order of I>Cl>Br>F. Lastly, the obtained results are rationalized through Bader charge analysis.  相似文献   

14.
Tin dioxide (SnO2) has intrinsic characteristics that do not favor its photocatalytic activity. However, we evidenced that surface modification can positively influence its performance for CO2 photoreduction in the gas phase. The hydroxylation of the SnO2 surface played a role in the CO2 affinity decreasing its reduction potential. The results showed that a certain selectivity for methane (CH4), carbon monoxide (CO), and ethylene (C2H4) is related to different SnO2 hydrothermal annealing. The best performance was seen for SnO2 annealed at 150 °C, with a production of 20.4 μmol g−1 for CH4 and 16.45 μmol g−1 for CO, while for SnO2 at 200 °C the system produced more C2H4, probably due to a decrease of surface −OH groups.  相似文献   

15.
The O2 activation and CO oxidation on nitrogen‐doped C59N fullerene are investigated using first‐principles calculations. The calculations indicate that the C59N fullerene is able to activate O2 molecules resulting in the formation of superoxide species ( ) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO2 via the Eley–Rideal mechanism by passing a stepwise reaction barrier of only 0.20 eV. Ab initio molecular dynamics (AIMD) simulation is carried out to evidence the feasibility of the Eley–Rideal mechanism. In addition, the second CO oxidation takes place with the remaining atomic O without any activation energy barrier. The full catalytic reaction cycles can occur energetically favorable and suggest a two‐step Eley–Rideal mechanism for CO oxidation with O2 catalyzed by the C59N fullerene. The catalytic properties of high percentage nitrogen‐doped fullerene (C48N12) is also examined. This work contributes to designing higher effective carbon‐based materials catalysts by a dependable theoretical insight into the catalytic properties of the nitrogen‐doped fullerene. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
The integration of molecular catalysts with low‐cost, solid light absorbers presents a promising strategy to construct catalysts for the generation of solar fuels. Here, we report a photocatalyst for CO2 reduction that consists of a polymeric cobalt phthalocyanine catalyst (CoPPc) coupled with mesoporous carbon nitride (mpg‐CNx) as the photosensitizer. This precious‐metal‐free hybrid catalyst selectively converts CO2 to CO in organic solvents under UV/Vis light (AM 1.5G, 100 mW cm?2, λ>300 nm) with a cobalt‐based turnover number of 90 for CO after 60 h. Notably, the photocatalyst retains 60 % CO evolution activity under visible light irradiation (λ>400 nm) and displays moderate water tolerance. The in situ polymerization of the phthalocyanine allows control of catalyst loading and is key for achieving photocatalytic CO2 conversion.  相似文献   

17.
Advancing the performance of the Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) is crucial for its practical applications. Still, the wettable pristine Cu surface often suffers from low exposure to CO2, reducing the Faradaic efficiencies (FEs) and current densities for multi-carbon (C2+) products. Recent studies have proposed that increasing surface availability for CO2 by cation-exchange ionomers can enhance the C2+ product formation rates. However, due to the rapid formation and consumption of *CO, such promotion in reaction kinetics can shorten the residence of *CO whose adsorption determines C2+ selectivity, and thus the resulting C2+ FEs remain low. Herein, we discover that the electro-kinetic retardation caused by the strong hydrophobicity of quaternary ammonium group-functionalized polynorbornene ionomers can greatly prolong the *CO residence on Cu. This unconventional electro-kinetic effect is demonstrated by the increased Tafel slopes and the decreased sensitivity of *CO coverage change to potentials. As a result, the strongly hydrophobic Cu electrodes exhibit C2+ Faradaic efficiencies of ≈90 % at a partial current density of 223 mA cm−2, more than twice of bare or hydrophilic Cu surfaces.  相似文献   

18.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

19.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

20.
The biocatalytic function of carbon monoxide dehydrogenase (CODH) has a high environmental relevance owing to its ability to reduce CO2. Despite numerous studies on CODH over the past decades, its catalytic mechanism is not yet fully understood. In the present combined spectroscopic and theoretical study, we report first evidences for a cyanate (NCO) to cyanide (CN) reduction at the C-cluster. The adduct remains bound to the catalytic center to form the so-called CN-inhibited state. Notably, this conversion does not occur in crystals of the Carboxydothermus hydrogenoformans CODH enzyme (CODHIICh), as indicated by the lack of the corresponding CN stretching mode. The transformation of NCO, which also acts as an inhibitor of the two-electron-reduced Cred2 state of CODH, could thus mimic CO2 turnover and open new perspectives for elucidation of the detailed catalytic mechanism of CODH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号