首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract— An important factor in determining the efficacy of photosensitizing compounds in photodynamic therapy of tumors is the level to which tumors take up the photosensitizers after systemic injection. This parameter seems to be related to the transport modalities of the photosensitizer in the bloodstream. In this work the photosensitizer Zn(II)-tetradibenzobarreleno-octabutoxyphthalocyanine was shown to have an unprecedentedly high association with low-density lipoproteins (71% of the phthalocyanine in the plasma) when delivered in Cremophor micelles to tumor-bearing mice. This was accompanied by a particularly high tumor uptake at 24 h post-injection.  相似文献   

2.
Abstract— Photodynamic therapy (PDT) of cancer is a modality that relies upon the irradiation of tumors with visible light following selective uptake of a photosensitizer by the tumor tissue. There is considerable emphasis to define new photosensitizers suitable for PDT of cancer. In this study we evaluated six phthalocyanines (Pc) for their photodynamic effects utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources. Of the newly synthesized Pc, two showed significant destruction of cytochrome P-450 and monooxygenase activities, and enhancement of lipid peroxidation, when added to microsomal suspension followed by irradiation with ∼ 675 nm light. These two Pc named SiPc IV (HOSiPcOSi[CH3]2[CH2]3N[CH3]2) and SiPc V (HOSiPcOSi[CH3]2[CH2]3N[CH3]31 I) showed dose-dependent photodestruction of cytochrome P-450 and monooxygenase activities in liver microsomes, and photoenhancement of lipid peroxidation, lipid hydroperoxide formation and lipid fluorescence in rnicrosomes and erythrocyte ghosts. Compared to chloroaluminum phthalocyanine tetrasulfonate, SiPc IV and SiPc V produced far more pronounced photodynamic effects. Sodium azide, histidine, and 2,5-dimethylfuran, the quenchers of singlet oxygen, afforded highly significant protection against SiPc IV- and SiPc V-mediated photodynamic effects. However, to a lesser extent, the quenchers of superoxide anion, hydrogen peroxide and hydroxyl radical also showed some protective effects. These results suggest that SiPc IV and SiPc V may be promising photosensitizers for the PDT of cancer.  相似文献   

3.
A Si(IV)-phthalocyanine bearing two methoxyethyleneglycol axial ligands bound to the central metal ion (SiPc) has been prepared by chemical synthesis and analyzed for its phototherapeutic activity after administration in a Cremophor or liposome formulation to C57B1/6 mice bearing a subcutaneously transplanted Lewis lung carcinoma (LLC). The maximum drug accumulation in the tumor is found at 24 h after intraperitoneal injection, independent of the delivery system. However, the tumor concentration of SiPc in the Cremophor formulation is about two-fold higher, while the drug concentration in liver and skin shows similar trends with the two delivery systems. The drug accumulation and retention in the brain is much larger when using Cremophor emulsion. Photodynamic therapy (672 nm, 370 mW m−2, 360 J cm−2) at 24 h after the injection of Cremophor emulsion- or DPPC liposome-formulated SiPc causes a very efficient and similar response for the LLC (8 versus 22 mm mean tumor diameter for the control groups at 21 days after phototreatment). These very promising effects, obtained both at higher and lower tumor drug concentrations, clearly demonstrate the potential phototherapeutical activity of the newly synthesized SiPc.  相似文献   

4.
Abstract— The photodynamic therapy (PDT) efficiency of five phthalocyanines, chloroaluminum phthalocyanine (AlPc), dichlorosilicon phthalocyanine (SiPc), bis (tri- n -hexylsi-loxy)silicon phthalocyanine (PcHEX), bis (triphenyl-siloxy)silicon phthalocyanine (PcPHE) and nickel phthalocyanine (NiPc), was assessed on two leukemic cell lines TF-1 and erythroieukemic and B lymphoblastic cell lines, Daudi, respectively. AlPc showed the best photocytotox-icity leading to 0.008 surviving fraction at 2 × 10−9 M for TF-1 and 4 × 10−9 M for Daudi. At 5 × 10−7 M , SiPc and PcHEX induced a significant photokilling, whereas NiPc and PcPHE were inactive. Laser flash photolysis and photoredox properties of the phthalocyanines were investigated to try to relate these parameters with the biological effects. AlPc showed the longest triplet lifetime: 484 fis in dimethyl sulfoxide/H2O. This value was increased up to 820 u.s when AlPc was complexed with human serum albumin used as a membrane model. Such an enhancement was not observed with the silicon phthalocyanines. Upon irradiation, all the phthalocyanines generated singlet oxygen with 0.29–0.37 quantum yield values. The reduction potentials of the excited states obtained from measurement in the ground state and energy of the excited triplets show that AlPc is the best electron acceptor. The in vitro photocytotoxicity observed and the measured parameters are in agreement with a key role of electron transfer in PDT assays involving these phthalocyanines.  相似文献   

5.
RETINAL SENSITIZED PHOTODYNAMIC DAMAGE TO LIPOSOMES   总被引:2,自引:0,他引:2  
Abstract. All trans -retinal has been introduced (2 mol %) into artificial membranes made up of egg lecithin, cholesterol and dicetyl phosphate. Illumination of retinal-enriched liposomes at 365 nm induced photodynamic damages; it triggered the sensitized oxidation of the lipids measured by the appearance of a 233 nm absorption band or by the formation of malonyl dialdehyde. Illumination produced an increase of the membrane fluidity detected with the spin label technique and led also to the lysis of the liposomes as revealed by the release of entrapped chromate ions or by changes in light scattering. Singlet oxygen is involved in these photodynamic effects. The results have been discussed in connection with the light damage phenomena which may afflict the rod outer segment membranes.  相似文献   

6.
A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive polymeric photosensitizer (PEG110-b-P(DPAn-co-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be 1 havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photocatalysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its dispersivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.  相似文献   

7.
Abstract Very little is known about the applicability of the metabolic and biochemical events observed in cell culture systems to in vivo tumor shrinkage following photodynamic therapy (PDT). The purpose of this study was to assess whether PDT induces apoptosis during tumor ablation in vivo . We treated radiation-induced fibrosarcoma (RIF-1) tumors grown in C3H/HeN mice with PDT employing three photosensitizers, Photofrin-II, chloroaluminum phthalocyanine tetrasulfonate, or Pc IV (a promising phthalocyanine developed in this laboratory). Each photosensitizer was injected intraperitoneally and 24 h later the tumors were irradiated with an appropriate wavelength of red light using an argon-pumped dye laser. During the course of tumor shrinkage, the tumors were removed at 1, 2, 4 and 10 h post-PDT for DNA fragmentation, histopathologic, and electron microscopic studies. Markers of apoptosis, viz . the ladder of nucleosome-size DNA fragments, increased apoptotic bodies, and condensation of chromatin material around the periphery of the nucleus, were evident in tumor tissue even 1 h post-PDT; the extent of these changes increased during the later stages of tumor ablation. No changes were observed in tumors given photosensitizer alone or irradiation alone. Our data suggest that the damage produced by in vivo PDT may activate endonucleolysis and chromatin condensation, and that apoptosis is an early event in tumor shrinkage following PDT.  相似文献   

8.
The photodynamic therapy (PDT) activity of the bis(dimethylthexylsiloxy)silicon 2,3-na-phthalocyanine (SiNc 8 ) was evaluated against the EMT-6 tumor implanted intradermally in BALB/c mice. The SiNc 8 was formulated in aqueous emulsions based on Cremophor EL or Solutol HS 15. The formulation was shown to affect plasma clearance and overall pharmacokinetics. Compared to Cremophor, Solutol promoted rapid plasma clearance and high liver retention of the dye, combined with a slight increase of dye tumor concentrations. The PDT action spectrum for tumor response of SiNc 8 in Cremophor (190 mW cm2, 200 J cm2, 24 h postinjection [p.i.] of 1 (jimol kg1) showed a maximum at 780 nm, which corresponds to the absorption maximum of the monomelic dye as well as the in vivo maximum change in the “diffuse optical density” produced by the dye. The extent of tumor necrosis increased with augmented dye and light doses. Regardless of the formulation, at 1 h p.i. of 0.1 μmol kg?! SiNc 8 , PDT efficiency (190 mW cm'2, 400 J cm2) was high but accompanied by severe damage to normal tissues, at 24 h PDT resulted in complete tumor regression in 80% of the animals without adverse effects to adjacent tissues, while at 72 h p.i. PDT induced no tumor response with Cremophor and only a partial response with Solutol. At the latter time point, plasma dye clearance was nearly complete while tumor tissue levels remained high, suggesting that tumor response correlates with plasma rather than tumor dye levels. Skin sensitivity of SKhl mice to solar-simulated radiation was lower with SiNc 8 as compared to Photofrin®. Our data suggest the potential of SiNc 8 as a far-red absorbing photosensitizer in clinical PDT.  相似文献   

9.
Structure–activity relationships have been widely reported for porphyrin and phthalocyanine photosensitizers, but not for phenothiazinium derivatives. Here, four phenothiazinium salts (methylene blue, toluidine blue O, 1,9‐dimethyl methylene blue and the pentacyclic derivative DO15) were used to investigate how the ability to damage membranes is affected by membrane/solution partition, photophysical properties and tendency to aggregation of the photosensitizer. These two latter aspects were studied both in isotropic solutions and in membranes. Membrane damage was assessed by leakage of a fluorescent probe entrapped in liposomes and by generation of thiobarbituric acid‐reactive species (TBARS), while structural changes at the lipid bilayer were detected by small‐angle X‐ray scattering. We observed that all compounds had similar singlet‐oxygen quantum yields in ethanol, but only the photosensitizers that had higher membrane/solution partition (1,9‐dimethyl methylene blue and DO15, the latter having the higher value) could permeabilize the lipid bilayer. Moreover, of these two photosensitizers, only DO15 altered membrane structure, a result that was attributed to its destabilization of higher order aggregates, generation of higher amounts of singlet oxygen within the membranes and effective electron‐transfer reaction within its dimers. We concluded that membrane‐based protocols can provide a better insight on the photodynamic efficiency of the photosensitizer.  相似文献   

10.
将氨基锌酞菁(ZnTAPc)与甲基丙烯酰氯反应制备出含有不饱和双键的取代锌酞菁衍生物(MeZnAPc),采用ATRP法将聚乙二醇单甲醚大分子引发剂(mPEG110-Br)与甲基丙烯酸(2-异丙胺基)乙酯(DPA)和MeZnAPc共聚,制得一种新型pH响应两亲嵌段锌酞菁聚合物光敏剂(PEG110-b-P(DPAn-co-MeZnAPcm)).用1HNMR,FTIR对MeZnAPc和聚合物光敏剂进行表征.UV-vis测试表明该聚合物光敏剂在pH6.0~6.5具有较好的pH响应性.以1,3-二苯基苯并呋喃(DPBF)为底物研究了该聚合物光敏剂的光催化氧化效率,结果表明其具有较高光活性.利用该聚合物光敏剂在不同pH的水溶液中对L-色氨酸进行光催化氧化实验,结果发现在pH5.5不存在胶束时,锌酞菁可以较好地分散在溶液中,并能维持较高光活性,而在pH7.4形成胶束时可以将锌酞菁很好地包裹在其内部,使其光活性大大降低.因此,这种pH响应两亲嵌段锌酞菁聚合物作为一种新型光敏剂,在光动力学治疗领域有较好的应用前景.  相似文献   

11.
Abstract— Bis(di-isobutyl octadecylsiloxy)silicon 2,3-naphthalocy-anine (isoBOSINC) is a representative of a group of naphthalocyanine derivatives with spectral and photophysical properties that make them attractive candidates for photodynamic therapy (PDT). Tissue distributions were studied in tumor-bearing rats as a function of delivery system and time following administration. The tumor model was an N-(4-[5-nitro-2-furyl]-2-thiazolyl) formamide (FANFT)-induced urothelial cell carcinoma transplanted into one hind leg of male Fischer 344 rats; isoBOSINC was delivered to the rats by intravenous injection of 0.50 mg/kg of body weight as a suspension either in 10% Tween 80 in saline (Tween) or 10% (Cremophor® EL + propylene glycol) in saline (Cremophor). The isoBOSINC was isolated from several tissues and organs, as well as tumors and peritumoral muscles and skin. Quantitation was by a high-performance liquid chromatographic technique with detection that utilizes the native fluorescence of the naphthalocyanine derivative. Independent of the delivery system, the dye was retained in tumors at higher concentrations than in normal tissues, except for spleen and liver. The isoBOSINC retention in tumors was high and was vehicle dependent. For Tween, the maximal ratio of dye in tumor versus peritumoral muscle occurred 12 h after injection; for Cremophor, the maximal ratio occurred later, 336 h postinjection. When the drug was delivered in Tween, isoBOSINC in serum showed two compartment kinetics: half-lives of about 2 and 11 h were found for the distribution and the elimination phases, respectively. When Cremophor was the vehicle, the elimination half-life was about 20 h, and one compartment kinetics was observed. The latter findings may explain the generally higher levels of the dye attained by the tissues at later times with Cremophor as the vehicle. An interesting exception wasthat after 7 and 14 days postinjection in Tween, the levels of dye found in testes were six- to seven-fold higher than those found after Cremophor delivery. Levels of dye were very low or not detectable in the brain. Optimal parameters for PDT of tumors with this novel photosensitizer are clearly time- and vehicle-dependent, and future PDT studies will need to incorporate these modulators.  相似文献   

12.
运用电容法研究卵磷脂/氨基酸/H2O胶束和囊泡体系结构与性质.卵磷脂的临界胶束浓度和囊泡生成浓度可由体系电容-卵磷脂浓度关系曲线求得.随着卵磷脂浓度增加,体系电容增加,卵磷脂由胶束形成囊泡.随着氨基酸浓度增加,胶束、囊泡半径增大,体系电容减小.氨基酸能促进卵磷脂形成胶束和囊泡,使得卵磷脂临界胶束浓度和囊泡生成浓度减小,其影响的强弱顺序为组氨酸色氨酸垌甘氨酸.  相似文献   

13.
A novel zinc(II) phthalocyanine conjugated with a short peptide with a nuclear localization sequence, Gly-Gly-Pro-Lys-Lys-Lys-Arg-Lys-Val, was synthesized by click chemistry and a standard Fmoc solid-phase peptide synthesis protocol. The conjugate was purified by HPLC and characterized with UV/Vis and high-resolution mass spectroscopic methods. Both this compound and its non-peptide-conjugated analogue are essentially non-aggregated in N,N-dimethylformamide and can generate singlet oxygen effectively with quantum yields (Φ(Δ)) of 0.84 and 0.81, respectively, relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ) =0.56). Conjugation of the peptide sequence, however, can enhance the cellular uptake, efficiency in generating intracellular reactive oxygen species, and photocytotoxicity of the phthalocyanine-based photosensitizer against HT29 human colorectal carcinoma cells. The IC(50) value of the conjugate is as low as 0.21 μM. In addition, the conjugate shows an enhanced tumor-retention property in tumor-bearing nude mice. After 72 h post-injection, the dye concentration in the tumor was significantly higher than that in other organs. The results suggest that this phthalocyanine-peptide conjugate is a highly promising photosensitizer for photodynamic therapy.  相似文献   

14.
Using 1-anilino,8-naphthalenesulfonic acid (ANS) as a probe, we examined properties of micelles of Cremophor EL, an amphipathic agent which can solubilize hydrophobic photosensitizing agents and promote their distribution to plasma lipoprotein. In aqueous solution, Cremophor micelles persisted for several hours after dilution below the critical micellar concentration (CMC). After equilibrium was reached, we found a CMC of 0.009% (wt/vol). Fluorescence data suggest that the micellar environment of ANS binding has a dielectric constant of approximately 27. Cremophor also reverses examples of multi-drug resistance associated with impaired accumulation of anti-tumor agents, e.g. daunorubicin. Although the latter drug is relatively hydrophilic, fluorescence spectroscopy and anisotropy studies indicate an association with Cremophor. Moreover, resistance reversal occurred only at Cremophor concentrations above the CMC.  相似文献   

15.
Photodynamic therapy (PDT) is an increasingly popular anticancer treatment that uses photosensitizer, light and tissue oxygen to generate cytotoxic reactive oxygen species (ROS) within illuminated cells. Acting to counteract ROS-mediated damage are various cellular antioxidant pathways. In this study, we combined PDT with specific antioxidant inhibitors to potentiate PDT cytotoxicity in MCF-7 cancer cells. We used disulphonated aluminium phthalocyanine photosensitizer plus various combinations of the antioxidant inhibitors: diethyl-dithiocarbamate (DDC, a Cu/Zn-SOD inhibitor), 2-methoxyestradiol (2-ME, a Mn-SOD inhibitor), l-buthionine sulfoximine (BSO, a glutathione synthesis inhibitor) and 3-amino-1,2,4-triazole (3-AT, a catalase inhibitor). BSO, singly or in combination with other antioxidant inhibitors, significantly potentiated PDT cytotoxicity, corresponding with increased ROS levels and apoptosis. The greatest potentiation of cell death over PDT alone was seen when cells were preincubated for 24 h with 300 μM BSO plus 10 mM 3-AT (1.62-fold potentiation) or 300 μM BSO plus 1 μM 2-ME (1.52-fold), or with a combination of all four inhibitors (300 μM BSO, 10 mM 3-AT, 1 μM 2-ME and 10 μM DDC: 1.4-fold). As many of these inhibitors have already been clinically tested, this work facilitates future in vivo studies.  相似文献   

16.
在二氯硅酞菁轴向位置引入硝基芳基苄醚树枝配体是一种减少酞菁配合物聚集体形成,提高其光动力活性的有效方法。本文采用UV/Vis、稳态和瞬态荧光光谱法比较了1-3代硝基芳基苄醚树枝配体轴向取代硅(Ⅳ)酞菁的光物理性质。研究结果表明,随着轴向树枝配体代数的增加,Q带最大吸收峰强度增大,酞菁核荧光强度增强,荧光量子产率降低,荧光寿命增长。研究结果将为开发轴向取代硅(Ⅳ)酞菁配合物作为新型光敏剂提供重要的理论依据。  相似文献   

17.
The effectiveness of intratumoral photoradiation in photodynamic therapy (PDT) using a polyporphyrin photosensitizer was studied in the RT-2 rat glioma model. One week after intracerebral implantation of RT-2 cells, experimental rats received a single i.p. injection of 2 mg/kg of Photofrin. After administration of the photosensitizer (48 h), the tumors were partially resected and the exposed cavity was irradiated with 15 J of laser light at a wavelength of 630 nm. Further treatment with a large craniectomy significantly enhanced rat survival. Control rats which received no photosensitizer but were treated with surgery, alone or in combination with laser irradiation, succumbed from early tumor recurrence. Photodynamic therapy without decompressive surgery resulted in hemorrhagic infarction of residual tumor and adjacent brain with focal cerebral edema which resulted in cerebral herniation and early death. Our results indicate that photodynamic therapy is effective in treating residual brain tumor but at the expense of brain tissue surrounding the tumor. Unless relieved, intracranial pressure from photodynamic therapy-associated cerebral edema in this animal model resulted in shortened survival.  相似文献   

18.
Three new bisperylenebisimide-silicon phthalocyanine triads [(PBI)(2)-SiPcs 1, 2, and 3] connected with either rigid or flexible bridges were synthesized and characterized. A new synthetic approach to connect SiPc and PBI moieties through click chemistry produced triad 3 with an 80% yield. In (PBI)(2)-SiPc 1, PBI and SiPc are orthogonal and were connected with a rigid connector; triads 2 and 3 bear flexible aliphatic bridges, resulting in a tilted (2) or nearly parallel arrangement (3) of PBI and SiPc. Photoinduced intramolecular processes in these (PBI)(2)-SiPcs were studied and the results are compared with those of the reference compounds SiPc-ref and PBI-ref. The occurrence of electron-transfer processes between the SiPc and PBI units was confirmed by time-resolved emission and transient absorption techniques. Charge-separated (CS) states with lifetimes of 0.91, 1.3 and 2.0 ns for triads 1, 2, and 3, respectively, were detected using femtosecond laser flash photolysis. Upon the addition of Mg(ClO(4))(2), an increase in the lifetime of the CS states to 59, 110 and 200 μs was observed for triads (PBI)(2)-SiPcs 1, 2, and 3, respectively. The energy of the CS state (SiPc(·+)-PDI(·-)/Mg(2+)) is lower than the energy of both silicon phthalocyanine ((3)SiPc*-PDI) and perylenebisimide (SiPc-(3)PDI*) triplet excited states, which decelerates the metal ion-decoupled electron-transfer process for charge recombination to the ground state, thus increasing the lifetime of the CS state. The photophysics of the three triads demonstrate the importance of the rigidity of the spacer and the orientation between donor and acceptor units.  相似文献   

19.
To demonstrate the effect of axial ligands on the structure–activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single‐crystal XRD analysis, rotation of the axial ? OMe ligands was observed in SiPc 3 , which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the 1H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT.  相似文献   

20.
A decrease in the efficacy of photodynamic therapy (PDT) with phthalocyanine photosensitizers was observed for lymphoblastic murine and human cell lines as the time between the addition of the photosensitizer, aluminum phthalocyanine (AlPc), to the culture medium and exposure to light was increased from 4 h to 18 h. The total intracellular concentration of photosensitizer did not decrease significantly during this 18 h interval. For the murine cell lines, the maximum cytotoxic and mutagenic effects were observed when the time between addition of the photosensitizer and irradiation was between 1 and 4 h. The time course of the variations in efficacy did not vary greatly from one murine cell line to another, even though the cell lines differ markedly in the extent of their cytotoxic and mutagenic response. The time course of the variation was similar for cytotoxicity and mutagenicity, as well as for the induction of DNA fragmentation. The human lymphoblastic cell line, WTK1, showed less variation in survival and mutability with time than did the murine cell lines. With Pc 4 (HOSiPcOSi[CH3]2[CH2]3N[CH3]2) as the photosensitizer, the photocytotoxicity for murine L5178Y (LY)-Sl cells did not change significantly as the time between addition of Pc 4 and irradiation was increased from 2 to 18 h. However, the mutagenicity decreased by a factor of three during this interval. The mutagenicity of PDT with Pc 4 was much less in LY-Sl cells than that with AlPc. The results suggest that the variation in the efficacy observed for AIPc-induced photocytotoxicity is caused by changes in the intracellular distribution and/or the aggregation of the photosensitizer with time after its addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号