首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
刘丹青  袁振东 《化学通报》2019,82(12):1141-1146
自18世纪石墨与金刚石的组成被确定为碳元素后,碳单质概念初步形成。然而,20世纪末期,包括C60在内的富勒烯一族的发现突破了人们对碳单质的认识。随后,碳纳米管、石墨烯以及人工合成的T-碳的出现,重新诠释了碳单质的概念。碳单质的新发现,建立了从零维到三维的碳范式,掀开了对“碳单质”研究和应用的新篇章。  相似文献   

2.
<正>《Science》杂志在2004年首次报道了石墨烯被成功稳定分离的研究,由此推动了石墨烯材料的研究。作为最薄的二维碳材料,石墨烯具有其他材料无法比拟的特性,如强度高(拉伸强度130GPa、杨氏模量1TPa,是目前发现的强度最高的材料)、电  相似文献   

3.
碳团簇是一种新型的碳材料,自20世纪80年代被发现以来,就以其独特的结构和优越的性能而在科学界掀起了研究狂潮。碳团簇的范畴非常广泛,小到气相中的单个碳原子,大到富勒烯、碳纳米管、碳纳米锥、石墨烯等都可以看作是碳团簇的存在形式。研究碳团簇的结构及其演进,解开碳团簇形成机理之谜,对开拓新型碳团簇材料的结构和应用都具有重要意义。本文对碳团簇的结构及其演进过程进行了回顾,并概述了目前碳团簇的合成方法、碳团簇结构的表征手段以及碳团簇演进的研究现状。  相似文献   

4.
石墨烯及其聚合物纳米复合材料   总被引:1,自引:0,他引:1  
张力  吴俊涛  江雷 《化学进展》2014,26(4):560-571
石墨烯是一种新型的二维纳米碳材料,具有优异的机械性能、电性能和热性能等,是聚合物纳米复合材料的理想填料。近年来,石墨烯/聚合物纳米复合材料成为聚合物基纳米复合材料的研究热点。本文对石墨烯及其聚合物纳米复合材料的研究进展进行了综述。首先概述了石墨烯的不同制备方法及石墨烯的共价与非共价改性途径。然后重点总结了石墨烯/聚合物纳米复合材料的常用制备方法及其机械性能、导电性、导热性、耐热性及阻隔性能。最后,对该领域所存在的问题进行了总结,并展望了其发展趋势。  相似文献   

5.
Feng Y  Luo Y 《色谱》2011,29(10):947-948
自2004年被首次制备出来,石墨烯就受到了全世界科学家的普遍关注。石墨烯是由单层碳原子组成的六方蜂巢状结构的二维物质,如果以每平方纳米石墨烯片层结构上容纳的碳原子个数为38来计算,石墨烯具有很大的比表面积(2630 m2/g),再加上其生产成本低,使其成为样品预处理中理想的富集材料之一。  相似文献   

6.
石墨烯是一种具有优异物理和化学性质的新型二维碳纳米材料,大规模低成本制备高品质石墨烯的方法是其能够得到广泛实际应用的重要前提. 电化学方法可以快捷、绿色无污染、批量制备高质量的石墨烯及其复合材料. 本综述在对石墨烯各种制备方法进行简要比较之后,对近年来石墨烯、石墨烯/无机纳米复合材料、石墨烯/聚合物复合材料以及类石墨烯材料的电化学法制备进展进行介绍并作了展望.  相似文献   

7.
尚瑞雨  袁振东 《化学教育》2022,43(13):120-124
20世纪20年代,美国化学家吉尔伯特·牛顿·路易斯提出O4分子存在的猜想。20世纪70年代,科学家利用红外光谱和可见光谱发现了由2个O2分子相互作用形成的O4二聚体。20世纪80年代,科学家通过理论计算提出存在亚稳态共价O4分子。共价O4分子作为氧元素同素异形体被认为是一种潜在的高能量密度材料。2007年,科学家通过评估共价O4分子的稳定性,确定了共价O4分子可被实验检测到。O4的发现史是从猜想到证实的过程,也是科学技术不断进步、科学思想演变发展的过程。  相似文献   

8.
袁振东  任正盼 《化学教育》2019,40(14):90-94
通过对碳单质概念发展历程的考证可知,碳是古代已知的非金属元素。至17—18世纪,随着科学实验的兴起和元素观的发展,金刚石和石墨均被证明为碳的单质,碳单质概念初步形成;20世纪80年代C60的发现及之后碳纳米管、石墨烯和T-碳的发现使人们对碳单质概念有了新认识。在化学教育中,须让学生认识到碳单质概念的发展史是物质的发现史,也是科学思想的演进史和科学方法的发展史。  相似文献   

9.
柏嵩  沈小平 《化学进展》2010,22(11):2106-2118
石墨烯(graphene)是近年被发现和合成的一种新型二维平面纳米碳质材料。由于其新奇的物理和化学性质,石墨烯已经成为了备受瞩目的科学新星,是纳米材料领域的一大研究热点。在石墨烯的研究中,基于石墨烯的无机纳米复合材料是石墨烯迈向实际应用的一个重要方向。本文在简要介绍石墨烯的结构、性质和制备方法的基础上,重点就近年来以石墨烯为基体的无机物(主要包括金属和半导体)纳米复合材料的合成和应用作一述评,并对石墨烯基无机纳米复合材料的研究和发展方向作了展望。  相似文献   

10.
三维石墨烯材料制备方法的研究进展   总被引:1,自引:0,他引:1  
石墨烯是由单层碳原子组成的新型二维碳纳米材料,因其众多独特而优异的理化特性,已成为近年来材料科学领域中最耀眼的明星材料。整合二维(2D)石墨烯形成具有微纳米结构的三维(3D)石墨烯材料,可有效调控石墨烯的电学、光学、化学、机械和催化特性。近期研究发现,基于3D石墨烯构建的功能器件在储能、环境、传感及生物分析领域表现出更为突出的性能。因而,制备新型3D石墨烯材料已成为当前石墨烯化学的研究热点。目前3D石墨烯材料的制备方法主要包括溶液自组装、界面自组装、模板介导合成法等。通过改变原材料或制备方法,可以有效调控3D石墨烯柔韧性、多孔性、活性面积、电子传递速度及传质等性能。本文介绍了当前3D石墨烯材料制备方法的研究进展,并简要评述3D石墨烯材料制备研究中所面临的挑战及应用前景。  相似文献   

11.
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow.  相似文献   

12.
The unique electronic properties of graphene, a one atom thick carbon layer, were reported by scientists in 2004. Since this time graphene has subsequently been found to display several more unique and fascinating electrical, optical and mechanical properties. One particular area in which graphene has reportedly made an impact is in the field of electrochemistry, such as in providing enhancements in energy storage/generation and electrochemical sensing applications. Since 2005, when graphene was shown to be fabricated by the so-called 'Scotch tape technique' where multiple layers of graphene are peeled from a slab of Highly Ordered Pyrolytic Graphite using adhesive tape and transferred onto an appropriate substrate, other fabrication methodologies of graphene have emerged. In the majority of cases, graphene is produced and supplied in solution, such that graphene has to be immobilised onto the desired surface. A fabrication process where graphene is grown upon a substrate and is ready for implementation is the Chemical Vapour Deposition (CVD) of graphene. In this perspective article we overview recent developments in the fabrication of CVD graphene and explore its utilisation in electrochemistry, considering its fundamental understanding through to applications in sensing and energy related devices.  相似文献   

13.
In this paper, a broad overview on the applications of different carbon-based nanomaterials, including nanodiamonds, fullerenes, carbon nanotubes, graphene, carbon nanofibers, carbon nanocones-disks and nanohorns, as well as their functionalized forms, in sample preparation is provided. Particular attention has been paid to graphene because many papers regarding its application in this research field are becoming available. The distinctive properties, derivatization methods and application techniques of these materials were summarized and compared. According to their research status and perspective, these nanomaterials were classified in four groups (I: graphene and carbon nanotubes; II: carbon nanofibers; III: fullerenes; and IV: nanodiamonds, carbon nanocones/disks and carbon nanohorns) and characteristics and future trends of every group were discussed.  相似文献   

14.
陈强强 《化学通报》2020,83(2):186-191
德国女化学家艾达·诺达克的亲身经历对理解她那个时代的女科学家具有重要的参照作用和价值。二战前后的德国禁止为已婚妇女提供带薪岗位,女科学家也不例外。在此背景下,婚前的几年包括婚后的30余年里艾达·诺达克与丈夫沃尔特·诺达克长期合作,以此赢得从事科学研究的机会和环境。婚后的艾达·诺达克几乎一直"无薪",甚至无明确的科研岗位,由此导致了不必要的歧视。尽管如此,艾达·诺达克依然取得了重要的科学成就,在铼元素的发现和核裂变预见方面的贡献尤为显著。艾达·诺达克虽获得了一些荣誉和一定的认可,但对她的认识和理解还需继续深入。  相似文献   

15.
Brownson DA  Banks CE 《The Analyst》2010,135(11):2768-2778
Graphene, a 2D nanomaterial that possesses spectacular physical, chemical and thermal properties, has caused immense excitement amongst scientists since its freestanding form was isolated in 2004. With research into graphene rife, it promises enhancements and vast applicability within many industrial aspects. Furthermore, graphene possesses a vast array of unique and highly desirable electrochemical properties, and it is this application that offers the most enthralling and spectacular journey. We present a review of the current literature concerning the electrochemical applications and advancements of graphene, starting with its use as a sensor substrate through to applications in energy production and storage, depicting the truly remarkable journey of a material that has just come of age.  相似文献   

16.
Graphene, an individual two-dimensional, atomically thick sheet of graphite composed of a hexagonal network of sp(2) carbon atoms, has been intensively investigated since its first isolation in 2004, which was based on repeated peeling of highly oriented pyrolyzed graphite (HOPG). The extraordinary electronic, thermal, and mechanical properties of graphene make it a promising candidate for practical applications in electronics, sensing, catalysis, energy storage, conversion, etc. Both the theoretical and experimental studies proved that the properties of graphene are mainly dependent on their geometric structures. Precise control over graphene synthesis is therefore crucial for probing their fundamental physical properties and introduction in promising applications. In this Minireview, we highlight the recent progress that has led to the successful chemical synthesis of graphene with a range of different sizes and chemical compositions based on both top-down and bottom-up strategies.  相似文献   

17.
Industrial preparation of graphene has been a research hotspot in recent years. Finding an economical and practical carbon source and reducing the cost of production and instrument is significant in industrial graphene production. Coal is a common carbon source. Efficient improvement and utilization in the cleaning of coal has recently been a popular research area. In this study, we developed a set of graphene preparation methods based on Anhui Huainan’s low-rank gas coal (HNGC). Using self-built experimental equipment, benzene precursor was prepared from HNGC and used as carbon source to realize graphene growth. The quality of the graphene was characterized by a high-resolution microscope and Raman spectrometer. This study provides a new idea and method for the preparation of low-rank coal-based graphene.  相似文献   

18.
The global energy crisis and environmental problems are becoming increasingly serious. It is now urgent to vigorously develop an efficient energy storage system. Lithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to their high energy density. Sulfur is abundant on Earth, low-cost, and environmentally friendly, which is consistent with the characteristics of new clean energy. Although LSBs possess numerous advantages, they still suffer from numerous problems such as the dissolution and diffusion of sulfur intermediate products during the discharge process, the expansion of the electrode volume, and so on, which severely limit their further development. Graphene is a two-dimensional crystal material with a single atomic layer thickness and honeycomb bonding structure formed by sp2 hybridization of carbon atoms. Since its discovery in 2004, graphene has attracted worldwide attention due to its excellent physical and chemical properties. Herein, this review summarizes the latest developments in graphene frameworks, heteroatom-modified graphene, and graphene composite frameworks in sulfur cathodes. Moreover, the challenges and future development of graphene-based sulfur cathodes are also discussed.  相似文献   

19.
《中国化学快报》2020,31(6):1462-1473
Graphene is a two-dimensional nanomaterial with huge surface area,high carrier mobility and high mechanical strength.Because of its great potential in nanotechnology and environmental protection,it has attracted much attention in environmental and energy fields since its discovery in 2004.Although graphene is a star material,many reviews have introduced its use in terms of energy,the research progress in the field of environment,especially water pollution control,has been rarely reported.Here,we review exhaustively the research progress of graphene-based materials in environmental pollution remediation in the past ten years.Firstly,the advantages and classification of graphene were introduced.Secondly,the research progress and main achievements of graphene and its composites in the fields of photocatalytic degradation,pollutant adsorption and water treatment were emphatically described,and the mechanism of action in the above fields was summarized.Finally,we discuss the problems existing in the preparation and summarize the application of graphene in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号