首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We thermodynamically characterize the interaction of chitosan with small liposomes and the binding and organization of the polysaccharide on the membrane of the vesicles. By means of isothermal titration calorimetry (ITC), we obtain the enthalpy variations arising from binding of the positively ionized chitosan to neutral and negatively charged liposomes. The strong electrostatic interaction of the polysaccharide with the negative charges at the membrane gives rise to highly exothermic signal until charge compensation is reached. The equilibrium constant, the interaction stoichiometry, and the molar enthalpy of binding chitosan monomers to phospholipids from the external leaflet of the vesicle membrane are obtained from the isotherm curve fitting assuming independent binding sites. The strong exothermic signal indicates that the electrostatically driven binding of chitosan to the membrane is energetically favored, leading to further stabilization of the vesicle suspension. The higher the net negative charge of the vesicles, the more pronounced the adsorption of chitosan is, leading to weaker chain organization of the adsorbed chitosan at the membrane. At the point of charge saturation, vesicle aggregation takes place and we show that this behavior does not always lead to charge reversal at the membrane. Models for the binding behavior and structural organization of chitosan are proposed based on the experimental results from ITC, ζ-potential, and dynamic light scattering.  相似文献   

2.
改性壳聚糖树脂对利尿剂的吸附性能   总被引:5,自引:0,他引:5  
用琥珀酸酐、苯甲酸酐、聚乙烯亚胺和 3 氯 2 羟丙基三甲基氯化铵对壳聚糖进行改性 ,分别在其氨基上引入羧基、苯环、多氨基和季胺基 ,并利用红外谱图对于改性后的壳聚糖的结构进行了分析 .应用相转移法制备了 4种改性壳聚糖的微球 ,实验研究了这 4种微球对 9种不同利尿剂的吸附性能 .结果表明 ,由于Lewis酸碱相互作用 ,引入羧基后的壳聚糖树脂对 3种碱性利尿剂的吸附量有了 15 %~ 36 %的提高 ,而引入多氨基的壳聚糖树脂对四种酸性利尿剂的吸附量分别提高了 4 8 5 %~ 2 0 9% ;由于苯环和利尿剂的憎水性基团的相互作用 ,引入苯环后的壳聚糖树脂对所有的利尿剂的吸附量都有所提高 ,其幅度为 15 %~ 6 1% ;因为季胺基团和羧基之间发生的离子交换作用 ,引入季胺基后的树脂对具有羧基的利尿剂吸附量有显著的提高 ,尤其对布美它尼的吸附量提高了 2倍以上 .  相似文献   

3.
Summary: The formation of polyelectrolyte complexes by interaction between chitosan and maleic acid copolymers as strong/weak dibasic polyanions was investigated. The interaction between the sodium salt of maleic acid copolymers with styrene or vinyl acetate and the chitosan hydrochloride in aqueous solution was followed by potentiometric, conductometric and turbidimetric titration. The effect of the added low molecular salt on the complex formation was also investigated. The precipitated complexes were analyzed by FTIR spectroscopy and TG analysis. Preliminary layer-by-layer deposition experiments were performed to obtain thin films.  相似文献   

4.
通过FTIR、X射线衍射、TGA和DSC等手段对壳聚糖-丝心蛋白合金膜的结构进行了表征.结果表明,合金膜中壳聚糖和丝心蛋白之间存在着较强的氢键相互作用,根据X射线衍射结果并结合合金膜表观均匀透明、扫描电镜观察未发现明显宏观相分离,认为合金膜是基本相容的.同时发现,在丝心蛋白中共混一定量的壳聚糖可以改善其吸水性和机械性能.  相似文献   

5.
The method to prepare microporous chitosan membrane by selective dissolution of its blend was evaluated. Two synthetic polymers, e.g. polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG), were chosen to be the counterpart polymers. Results of Fourier transform infrared (FTIR) characterization, differential scanning calorimeter (DSC) analysis, wide angle X-ray diffraction (WAXD) measurements showed that there are special interactions between chitosan and the counterpart polymers. The pore structure induced by this method is controlled by the compatibility of the chitosan and the counterpart polymers. No pore structure was induced in the case of chitosan/polyvinyl pyrrolidone because of their molecule level miscibility and strong interaction. Highly porous structure was induced in the case of chitosan/polyethylene glycol because of their poor compatibility and multiphase structure.  相似文献   

6.
Preparation of electrospun chitosan/poly(vinyl alcohol) membranes   总被引:1,自引:0,他引:1  
Electrospinning of chitosan from its solutions in 2% aqueous acetic acid was studied by adding poly(vinyl alcohol) (PVA) as a “guest” polymer. Properties of the chitosan/PVA solutions including viscosity, conductivity, and surface tension were measured, and effects of the polymer concentration, chitosan/PVA mass ratio and processing parameters (applied voltage, flow rate, capillary-to-collector distance) on the electrospinnability of chitosan/PVA were investigated. Analyses of scanning electron micrographs and transmission electron micrographs suggested that the chitosan/PVA ultrafine fibers were often obtained along with beads, and chitosan was located in the elctrospun fibers as well as in the beads. Uniform chitosan/PVA fibers with an average diameter of 99 ± 21 nm could be prepared from a 7% chitosan/PVA solution in 40:60 mass ratio. Results of Fourier transform infrared spectroscopy and X-ray diffraction demonstrated that there were possible hydrogen bonds between chitosan and PVA molecules, which could weaken the strong interaction in chitosan itself and facilitate chitosan/PVA electrospinnability. The electrospun chitosan/PVA membranes showed higher water uptake and would have potential applications in wound dressings.  相似文献   

7.
An influential subject of research is the use of lignin for effective removal of hazardous dyes from wastewater effluents utilizing green techniques. Lignin makes up to 10–25% of lignocellulosic biomass. In this study, a solvent evaporation approach was employed to construct a novel chitosan lignin membrane, which was then used to remove the methylene blue (MB) dye from water. The physicochemical, thermal, and morphological attributes were characterized by SEM, XRD, FTIR ATR, and TGA DSC. With higher lignin content in the membrane, its tensile strength was reduced. The dye was removed 95% of the time by the membrane, and the adsorption followed the Langmuir isotherm. The membranes could be recycled up to five times.  相似文献   

8.
Polyelectrolyte complexes (PECs) have been the focus of an expanding number of studies for their wide use. This study investigated the characteristics and biodegradation of chitosan-alginate PECs prepared by freeze-drying a precipitate from sufficient mixtures of the two polymers. The analyses of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) suggested that the partial protonated amine groups of chitosan reacted with the carboxylate groups of alginate and thus strong PECs were formed. After incubating in lysozyme solution, the PECs showed high ability of enzyme adsorption, and low degradation rate in spite of different degrees of deacetylation of chitosan, due to the strong interaction between chitosan and alginate and the hindrance of closely adsorbed lysozyme.  相似文献   

9.
海藻酸盐/壳聚糖衍生物复合抗菌纤维   总被引:6,自引:0,他引:6  
通过溶液纺丝法制备海藻酸盐/羧甲基壳聚糖(CMC)共混纤维,并用红外光谱,X射线衍射和扫描电镜对共混纤维进行了表征.结果表明:共混体系中的两种组分之间存在着较强的相互作用,有良好的相容性.当ωCMC=0.30时,共混纤维的干态抗张强度达到最大值,13.8cN/tex.当ωCMC=0.10时,纤维的干态断裂伸长率可达23.1%.纤维的湿态抗张强度和断裂伸长率随着CMC含量的增加而降低.CMC的引入,可显著提高纤维的吸水率.用壳聚糖季铵盐对纤维进行处理,可赋予纤维抗菌性.  相似文献   

10.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

11.
High density polyethylene (HDPE) is widely used in biomedical field, except when strong cell-material interactions and high mechanical properties are required. To address this pitfall, two kinds of chitosan in different amounts were used as filler in the present research. Composites were prepared by melt extrusion process and their microstructural, thermal and mechanical properties were widely investigated. Also roughness and wettability were studied, as features of paramount importance in dictating cell response.Both types of chitosan endowed HDPE with higher Young modulus and lower elongation at break. Interestingly, fibroblast adhesion and viability were enhanced when a low amount of filler was used. The interaction of HDPE/chitosan composites with biological environment was investigated for the first time in order to assess the feasibility of these composites as materials for biomedical application.  相似文献   

12.
壳聚糖丝心蛋白包药微球的结构和释放性能研究   总被引:6,自引:0,他引:6  
近年,高分子微球的研究与开发十分引人注目.将药物包裹于微球中,经主动和被动控制,进入预定靶器官或组织后缓慢释放出,不仅可降低其毒副作用,还可提高其生物活性利用度,壳聚糖(CS)可作牛血清白蛋白等药物缓释微球的载体[1~3].丝心蛋白(FB)含18种氨基酸,具有多孔性和良好的渗透性[4],也是一种理想的生物材料.壳聚糖和丝心蛋白共混可交联成半互穿聚合物网络(SemiIPN)结构.具有智能水凝胶的性能[5].本实验室已用纤维素铜氨液分别与干酪素、海藻酸钠及魔芋共混制得共混膜,两种分子间存在由次价键力引起的很强的相互作用,使其力学性…  相似文献   

13.
The production of cellulose-derived biofuels and biochemicals, such as bioalcohols and bioplastics, from lignocellulose requires the isolation of cellulose by lignin removal or delignification processes. While the remaining lignin and its phenolic fragments have been reported to inhibit the biological conversion of cellulose, we observed that the catalytic hydrolysis of cellulose also can be inhibited most likely because of an associative interaction between cellulose and lignin. The associative interaction between cellulose and the functional groups of lignin was proven by gel-permeation-chromatography measurement of regenerated mixtures of lignin and cellulose which simulate the lignocellulose-derived cellulose containing lignin as an impurity. Chemical bonds between cellulose and lignin were hypothesized using lignin model compounds containing known functionalities such as hydroxyl, methoxy, phenyl, allyl, and carboxyl groups in order to explain the effects of lignin on the hydrolysis of cellulose. The yield of glucose from cellulose dropped when carboxylic and hydroxyl groups were present possibly because of the formation of ether and ester bonds between the lignin and cellulose. These observations may help develop the chemical processes and therefore convert the inedible biomass resource of lignocellulose-based cellulose containing lignin and its derivatives to the valuable fuels and chemicals.  相似文献   

14.
天然高分子材料研究进展   总被引:10,自引:0,他引:10  
综述了近年来天然高分子材料的研究进展。主要介绍纤维素、木质素、淀粉、甲壳素、壳聚糖、其它多糖、蛋白质以及天然橡胶等天然高分子通过化学、物理方法以及纳米技术改性制备具有各种功能及生物可降解性环境友好材料的研究状况,并对此类新材料的应用前景进行了展望。  相似文献   

15.
The interaction of poly(o-ethoxyaniline) (POEA) doped with HCl and sulfonated lignin (SL) was investigated using UV–Vis spectroscopy in order to probe the influence of pH and quantity of SL on the formation of a polyelectrolyte complex. The introduction of SL into the HCl doped POEA solution screens the positive charges of the protonated POEA allowing further protons to be pumped into the conducting polymers thus increasing its doping level. In addition, the strong interaction between these two electrolytes caused POEA to remain doped within a wide pH range. Layers were built from aqueous solutions of the complex formed by POEA and SL which were alternated with either pure POEA or sulfonated polystyrene in the form of layer-by-layer films. The resulting multilayer films remained doped even at pH 9.0, due to the strong complex formation, which prevents POEA from deprotonating. Surface potential measurements showed that the potential for the POEA+SL complex is more positive than for films with each layer investigated separately, thus confirming the strong interaction between POEA and SL.  相似文献   

16.
An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalized chitosan,which possessed not only efficient redox-activity but also excellent film-forming ability,was coated on the bare glass carbon electrode. Moreover,the thiol groups(SH)in the ferrocenyl compound were used for gold nanoparticles immobilization via the strong bonding interaction,which co...  相似文献   

17.
Time profiles of evolution rates of gas and tar in steam gasification of model biomass samples were examined using a continuous cross-flow moving bed type differential reactor to elucidate the interaction of the major biomass components (cellulose, xylan, lignin) during gas and tar evolution. Two types of model biomass samples (sample A: mixture of cellulose (65 wt%) and lignin (35 wt%); sample B: mixture of cellulose (50 wt%), xylan (23 wt%), and lignin (27 wt%)) were used for the experiment. In steam gasification of sample A, the evolutions of water-soluble tar and gaseous products (CO, H2, CH4 and C2H4) are significantly suppressed by the interaction between cellulose and lignin. The primary (initial) decomposition of lignin is hindered by the interaction with pyrolysate of cellulose. Then, the CO2 evolution appreciably enhanced and the evolution of water-soluble tar delays. These results may imply that the volatilization of water-soluble tar derived from cellulose is suppressed by lignin and then the decomposition of char derived from polymerized saccharides and lignin takes place, emitting mainly CO2. From the results using sample B, it was found that the addition of xylan greatly enhances the evolutions of gases (CO2, CO, CH4 and H2) and accelerates the evolution of water-soluble tar and CO2, implying that the enhancement of decomposition of water-soluble tar into gases and/or xylan decomposes into gases without significant interaction with cellulose or lignin. In addition, yields of the major tar components (levoglucosan, furfural and 5-methylfurfural) were measured using HPLC. It was observed that the interaction among cellulose, xylan and lignin suppresses the evolution of levoglucosan and significantly increases the evolution rate of 5-methylfurfural. There is an insignificant influence of interaction among cellulose, xylan and lignin for furfural evolution.  相似文献   

18.
Polyion complexes of three chitosans with poly(vinyl sulfate) (PVS) and dodecylbenzene sulfonate (DBS) were examined by a potentiometric study that was to separately measure the pH of sample solutions individually prepared. Apparent formation constants (Ki) of ion association between the protonated amines of chitosan and the sulfates of PVS or the sulfonates of DBS were determined. The effects of pH, coexistent salt concentration, and molecular weight on the values of Ki were investigated in order to reveal the properties of the complexation. The values of Ki for chitosan-PVS were quite larger than that for chitosan-DBS. The deducing effect of the coexistent salt was strong against chitosan-PVS, but was weak against chitosan-DBS. Thus, chitosan-PVS complexes possessed a strong electrostatic binding, and chitosan-DBS complexes included a hydrophobic interaction. For chitosan-PVS complexes the effect of the coexistent salt was weaker for a high molecular weight of chitosan than for a low molecular weight.  相似文献   

19.
Chitosan microparticles were prepared with the purpose of incorporating all-trans retinoic acid (ATRA). Morphology, drug content, release behavior and the interaction between chitosan and ATRA were investigated. Chitosan microparticles presented irregular and rough surface and drug content of 47±3%. The results of DSC and IR spectroscopy demonstrated interaction between drug and polymer resulting from retinoate or retinoamide formation. The drug release study showed that approximately 90% of drug was not released from microparticles until the end of experiment (48 h). That release behavior was probably due to the strong drug–polymer interaction and the more compact network of microparticles formed.  相似文献   

20.
The cationic organic flocculant chitosan and its derivative, N-hydroxypropyl trimethyl ammonium chloride chitosan (HTCC), were used in the flocculation of tannic acid, the impurity widespread in Chinese medicine water extractions. This study aimed at investigating the flocculation performance and mechanism of chitosan and HTCC on the tannic acid colloidal particles. The results showed that chitosan and HTCC effectively flocculated the tannic acid solution and the mechanism was mainly for the adsorption bridging and charge neutralization by hydrogen bonding, electrostatic interaction, and hydrophobic interaction. Meanwhile, the charge neutralization of HTCC was stronger than that of chitosan. The optimal flocculation conditions of chitosan and HTCC on tannic acid were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号