首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axially chiral phenols are attractive targets in organic synthesis. This motif is central to many natural products and widely used as precursors to, or directly, as chiral ligands and catalysts. Despite their utility few simple catalytic methods are available for their synthesis in high enantiopurity. Herein the atropselective acylation of a range of symmetric biaryl diols is investigated using isothiourea catalysis. Studies on a model biaryl diol substrate shows that the high product er observed in the process is a result of two successive enantioselective reactions consisting of an initial enantioselective desymmetrization coupled with a second chiroablative kinetic resolution. Extension of this process to a range of substrates, including a challenging tetraorthosubstituted biaryl diol, led to highly enantioenriched products (14 examples, up to 98:2 er), with either HyperBTM or BTM identified as the optimal catalyst depending upon the substitution pattern within the substrate. Computation has been used to understand the factors that lead to high enantiocontrol in this process, with maintenance of planarity to maximize a 1,5‐S???O interaction within the key acyl ammonium intermediate identified as the major feature that determines atropselective acylation and thus product enantioselectivity.  相似文献   

2.
外消旋体的(动态)动力学拆分反应是制备手性化合物的重要方法之一.反应可以通过酶催化或非酶催化的手段来实现,也可以通过两种方法的有机结合来进行.在非酶催化反应中,路易斯酸碱催化是比较常用的方法,它们被广泛地用于多种外消旋体的(动态)动力学拆分反应中,目前在该领域取得了很大的进展.本文讨论了路易斯酸及路易斯碱催化体系在外消旋体(动态)动力学拆分反应中应用的最新进展.  相似文献   

3.
We have discovered that the racemization of configurationally stable, axially chiral 2,2′‐dihydroxy‐1,1′‐biaryls proceeds with a catalytic amount of a cyclopentadienylruthenium(II) complex at 35–50 °C. Combining this racemization procedure with lipase‐catalyzed kinetic resolution led to the first lipase/metal‐integrated dynamic kinetic resolution of racemic axially chiral biaryl compounds. The method was applied to the synthesis of various enantio‐enriched C1‐ and C2‐symmetric biaryl diols in yields of up to 98 % and enantiomeric excesses of up to 98 %, which paves the way for new developments in the field of asymmetric synthesis.  相似文献   

4.
A catalytic enantioselective nucleophilic aromatic substitution reaction which yields axially chiral biaryl derivatives in excellent yields with e.r. values of up to 97:3 has been developed. This process uses a chiral counterion to direct the addition of thiophenolate to a prochiral dichloropyrimidine by a tandem desymmetrization/kinetic resolution mechanism. The products can be derivatized to a range of atropisomeric structures without any reduction in enantioenrichment, thus offering access to unexplored chiral biaryl architectures.  相似文献   

5.
Atropisomeric biaryl pyridine and isoquinoline N‐oxides were synthesized enantioselectively by dynamic kinetic resolution (DKR) of rapidly racemizing precursors exhibiting free bond rotation. The DKR was achieved by ketoreductase (KRED) catalyzed reduction of an aldehyde to form a configurationally stable atropisomeric alcohol, with the substantial increase in rotational barrier arising from the loss of a bonding interaction between the N‐oxide and the aldehyde. Use of different KREDs allowed either the M or P enantiomer to be synthesized in excellent enantiopurity. The enantioenriched biaryl N‐oxide compounds catalyze the asymmetric allylation of benzaldehyde derivatives with allyltrichlorosilane.  相似文献   

6.
Can organocatalysts that incorporate fluxional groups provide enhanced selectivity in asymmetric transformations? To address this issue, we have designed chiral 4‐dimethylaminopyridine (DMAP) catalysts with fluxional chirality. These catalysts were found to be efficient in promoting the acylative kinetic resolution of secondary alcohols and axially chiral biaryl compounds with selectivity factors of up to 37 and 51, respectively.  相似文献   

7.
We present here a highly efficient NHC‐catalyzed kinetic resolution of a wide range of 1,1′‐biaryl‐2,2′‐diols and amino alcohols to provide them in uniformly ≥99 % ee. This represents the first highly enantioselective catalytic acylation of axially chiral alcohols. The aldehyde backbone that is incorporated into the chiral acyl azolium intermediate was found to have a significant effect on the enantioselectivity of the process.  相似文献   

8.
The implementation of lipase catalysis as a tool for the preparation of optically active biaryls is discussed. While attempts toward dynamic kinetic resolution based on the catalytic ring opening of configurationally unstable biaryl lactones were fruitless, kinetic resolution via transesterification of hydroxymethyl-decorated substrates was successfully employed in the generation of optically enriched, axially chiral biaryls.  相似文献   

9.
We report herein a novel atropoenantioselective redox‐neutral amination of biaryl compounds triggered by a cascade of borrowing hydrogen and dynamic kinetic resolution under the cooperative catalysis of a chiral iridium complex and an achiral Brønsted acid. This protocol features broad substrate scope and good functional‐group tolerance, and allows the rapid assembly of axially chiral biaryl compounds in good to high yields and with high to excellent enantioselectivity.  相似文献   

10.
An operationally simple isothiourea-catalysed acylative kinetic resolution of unprotected 1,1′-biaryl-2,2′-diol derivatives has been developed to allow access to axially chiral compounds in highly enantioenriched form (s values up to 190). Investigation of the reaction scope and limitations provided three key observations: i) the diol motif of the substrate was essential for good conversion and high s values; ii) the use of an α,α-disubstituted mixed anhydride (2,2-diphenylacetic pivalic anhydride) was critical to minimize diacylation and give high selectivity; iii) the presence of substituents in the 3,3′-positions of the diol hindered effective acylation. This final observation was exploited for the highly regioselective acylative kinetic resolution of unsymmetrical biaryl diol substrates bearing a single 3-substituent. Based on the key observations identified, acylation transition state models have been proposed to explain the atropselectivity of this kinetic resolution.  相似文献   

11.
The oxidative coupling reaction can efficiently be promoted by supported ruthenium catalyst Ru(OH)x/Al2O3. A variety of 2-naphthols and substituted phenols can be converted to the corresponding biaryl compounds in moderate to excellent yields using molecular oxygen as a sole oxidant in water without any additives. The catalysis is truly heterogeneous in nature, and Ru(OH)x/Al2O3 can easily be recovered after the reaction. The catalyst can be recycled seven times with the maintenance of the catalytic performance, and the total turnover number reaches up to 160. The results of competitive coupling reactions suggest that the present oxidative biaryl coupling reaction proceeds via the homolytic coupling of two radical species and the Ru(OH)x/Al2O3 catalyst acts as an one-electron oxidant. Two radical species are coupled to give the corresponding biaryl product, and the one-electron reduced catalyst is reoxidized by molecular oxygen. The amounts of O(2) uptake and H(2)O formation were almost one-quarter and one-half the amount of substrate consumed, respectively, supporting the reaction mechanism. The kinetic data and kinetic isotope effect show that the reoxidation of the reduced catalyst is the rate-limiting step for the coupling reaction.  相似文献   

12.
综述了金属-生物酶共催化合成手性化合物的研究进展,重点介绍了金属-生物酶共催化在动态动力学拆分、串联反应和"一锅法"一步反应中的应用,并对其未来发展进行了展望。参考文献49篇。  相似文献   

13.
酶-过渡金属配合物催化的动态动力学拆分研究进展   总被引:4,自引:1,他引:4  
张占辉  刘庆彬 《有机化学》2005,25(7):780-787
动态动力学拆分是合成具有光学活性化合物最方便和最有效的方法之一. 酶和金属配合物的结合扩展了这个方法的使用范围, 该方法的主要特征是用酶催化拆分和金属催化原位外消旋化未反应的底物, 克服了经典动力学拆分最高产率只有50%的缺陷. 概述了近几年这方面的研究进展.  相似文献   

14.
Axially chiral phenols are attractive targets in organic synthesis. This motif is central to many natural products and widely used as precursors to, or directly, as chiral ligands and catalysts. Despite their utility few simple catalytic methods are available for their synthesis in high enantiopurity. Herein the atropselective acylation of a range of symmetric biaryl diols is investigated using isothiourea catalysis. Studies on a model biaryl diol substrate shows that the high product er observed in the process is a result of two successive enantioselective reactions consisting of an initial enantioselective desymmetrization coupled with a second chiroablative kinetic resolution. Extension of this process to a range of substrates, including a challenging tetraorthosubstituted biaryl diol, led to highly enantioenriched products (14 examples, up to 98:2 er), with either HyperBTM or BTM identified as the optimal catalyst depending upon the substitution pattern within the substrate. Computation has been used to understand the factors that lead to high enantiocontrol in this process, with maintenance of planarity to maximize a 1,5-S⋅⋅⋅O interaction within the key acyl ammonium intermediate identified as the major feature that determines atropselective acylation and thus product enantioselectivity.  相似文献   

15.

The generally accepted mechanism of the Suzuki—Miyaura reaction suggests a sequential activation of the substrate (aryl halide) and the reagent (arylboronic acid) by a palladium catalyst with the formation of unsymmetric biaryl as a result of a single turnover of the catalytic cycle, i.e., it is linear from the kinetic point of view. At the same time, the use of an unconventional kinetic approach based on the analysis of the differential selectivity of the reaction, rather than the regularities of catalytic activity, indicates the inadequacy of the linear mechanism, that is consistent with the hypothesis of a nonlinear (the so-called cooperative) mechanism of catalysis, in which the product is formed as a result of the substrate and reagent activation by two different palladium-containing intermediates in two parallel catalytic cycles. The experimentally observed low kinetic orders of the Suzuki—Miyaura reaction with respect to the concentration of the palladium catalyst precursor under the ligand-free conditions of catalysis are also consistent with the cooperative mechanism and can be due to the changes in the relative amount of the catalyst in two parallel catalytic cycles and/or to the process of catalyst deactivation.

  相似文献   

16.
A Pd/(R)‐H8‐BINAP‐catalyzed asymmetric benzylic alkylation of active methylene compounds has been developed. The reaction proceeds without the use of an external base, and the starting racemic diarylmethyl carbonates are converted into the optically active coupling products which contain the benzylic chiral stereocenter by a dynamic kinetic asymmetric transformation (DYKAT). Additionally, with suitable carbonates bases, the same palladium catalysis allows the corresponding pivalates to be adopted in the same DYKAT process.  相似文献   

17.
Ashizawa T  Tanaka S  Yamada T 《Organic letters》2008,10(12):2521-2524
The atropo-enantioselective borohydride reduction with dynamic kinetic resolution of biaryl lactones was catalyzed by an optically active beta-ketoiminatocobalt(II) complex to afford optically active biaryl compounds. Chiral HPLC analysis of the starting biaryl lactones was performed at various temperatures to determine suitable reaction conditions for dynamic kinetic resolution. Various types of axially chiral biaryl compounds were obtained with high enantioselectivity.  相似文献   

18.
The condensation of 2′-formylbiphenyl-2-carboxylic acid 4 with (S)-valinol proceeds under kinetic control to give a major product, (4bR,7S,aS)-6,7-dihydro-7-isopropyldibenz[c,e]oxazolo[3,2-a]azepin-9(4bH)-one 6a (84%), in which the biaryl axis has the (S)-configuration. Heating 6a at 140°C with a catalytic amount of acid gives rise to an equilibrium dominated by the diastereoisomeric (4bS,7S)-lactam 6b (6a:6b ratio 27:73), in which the biaryl unit has the (R)-configuration. The structures of both lactams were established by X-ray crystallography; no other diastereoisomers were obtained.  相似文献   

19.
Azomethine imines are valuable substrates in asymmetric catalysis, and can be precursors to β‐amino carbonyl compounds and complex hydrazines. However, their utility is limited because complex and enantioenriched azomethine imines are often unavailable. Reported herein is a kinetic resolution of N,N′‐cyclic azomethine imines by enantioselective reduction (s=13–43). This resolution was accomplished using a Brønsted acid catalyst, and represents the first example of the asymmetric reduction of azomethine imines. The pyrazolidinone product (up to 86 % ee) and the recovered azomethine imine (up to 99 % ee) can both be used to access the opposite enantiomers of valuable products.  相似文献   

20.
自从 Sharpless 不对称环氧化被发现以来,这个反应已被广泛地应用于手性天然产物的合成。最近,Sharpless 及其同工作者又将原方法中使用的等摩尔量四异丙氧基钛和酒石酸酯减少到催化量,并加入3(?)或4(?)分子筛。这一改进可减少敏感性环氧醇产物的破环,使产物易于分离。从而使这个方法变得更为经济简便。我们曾报道过的改良 Sharpless  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号