首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
为了寻找兼具优异爆轰性能和良好热力学及动力学稳定性的高能材料,本文设计了15个硝基尿酸化合物,运用密度泛函理论,对其性质进行了研究.通过半经验的K-J方程和比冲量预测了其爆炸性能,结果表明,所设计分子的爆热、分子密度、爆炸速率和爆炸压强同硝基取代基数目之间存在较强的线性关系.三硝基尿酸和四硝基尿酸衍生物的爆炸速率超过了8.0 km/s,爆炸压强超过了30 GPa,并且大多数衍生物的比冲量要高于目前经常使用的炸药黑索金.通过计算N—NO2键的解离能、特征落高、分子的自由空间预判了衍生物的稳定性和撞击感度,结果显示,绝大多数分子有大于80 k J/mol的键解离能.本文的理论结果可以为实验上设计合成新的高能材料提供一些有用的信息.  相似文献   

2.
设计了一种新型高能量密度化合物1,3,4,5,7,8-六硝基八氢化二咪唑[4,5-b∶4',5'-e]吡嗪-2,6-(1H,3H)-N,N'-二亚硝胺(ONIP).运用密度泛函理论(DFT),在B3PW91/6-31G++(d,p)水平下进行优化并计算出了ONIP的一些重要性质.通过键级的分析,母环的五元环侧链处N—NO2键为分解引发键,其解离能为107.8 kJ/mol;该化合物理论密度为2.00 g/cm3,生成热为1693.71 kJ/mol,爆速为10.21 km/s,爆压为49.17 GPa,表明爆轰性能优异;其撞击感度为33 cm,优于黑索金(RDX)、奥克托金(HMX)和六硝基六氮杂异伍兹烷(CL-20);能级差为3.67 eV,表明分子稳定性较高.给出了2条合成路线,均具有步骤少且原料易得的优点.  相似文献   

3.
江涛  褚海亮  齐艳妮  李微雪  孙立贤 《催化学报》2007,28(12):1107-1111
采用密度泛函理论研究了氢气在镍掺杂的镁(0001)面上的解离吸附过程.通过固定键长法计算得到氢分子在镍掺杂的镁(0001)面上的解离能垒为0.09eV,而在清洁镁(0001)面上,氢气的解离能垒为1.15eV.电子结构分析表明,解离能垒的降低是由于氢分子与表面镍原子形成反馈键并被填充所致.这一计算结果表明,在镁中加入过渡金属催化剂会大大提高储氢材料的动力学性能.  相似文献   

4.
李彦军  宋婧  李春迎  杨建明  吕剑  王文亮 《化学学报》2009,67(13):1437-1446
以CN, NC, ONO2, N3, NH2, N2H, NHNH2, N4H和N4H3 9种含氮高能基团为取代基, 分别取代2,4,6,8,10,12-六氮杂异伍兹烷(IW)中亚氨基的6个H原子所形成的9种六氮杂异伍兹烷衍生物作为研究目标分子. 运用密度泛函理论, 在B3LYP/6-31G**水平上求得了它们的分子几何构型、电子结构、解离能(BDE)及IR谱等信息, 并设计等键反应计算了生成热( ). 基于统计热力学原理计算拟合了100~1200 K温度范围内体系的热力学函数, 利用Kamlet-Jacobs方程估算了它们的爆轰性能. 研究结果表明, 9种六氮杂异伍兹烷衍生物存在两种可能的热解引发类型. 在衍生物HNiIW, HBDAIW和HBAIW中, 可能的热解引发键是取代基内部的化学键, 而其余衍生物的热解引发键则可能是骨架N与取代基R之间N—R键. 另外, 硝酸酯基(ONO2)取代所得化合物HNiIW的密度ρ、爆速D及爆压p分别为1.998 g•cm-3, 9.71 km•s-1和44.47 GPa, 完全达到高能量密度化合物(HEDC)的基本要求, 且优于已应用的HNIW, 有望成为新型的HEDC.  相似文献   

5.
苯的硝基和叠氮基衍生物的理论研究   总被引:2,自引:0,他引:2  
在密度泛函理论B3LYP/6-31G*水平下优化了91个苯的硝基(NO2)和叠氮基(N3)衍生物的分子几何构型, 预测了它们的密度和生成热, 采用Kamlet-Jacobs方法计算了爆速和爆压, 筛选得到11种爆轰性能较好的高能量密度化合物(HEDC), 计算了它们的多个可能的热解引发键的键离解能(BDE)以及按“氧化呋咱机理”分解时的活化能(Ea). 结果表明, 当分子中有NO2与N3相邻时, 分解按“氧化呋咱机理”进行, 分解反应的Ea均大于100 kJ/mol|分子中没有NO2和N3相邻时, 热解始于C-NO2或C-N3均裂, 裂解的BDE都大于200 kJ/mol. 只含NO2或N3的7个物质的稳定性好于同时含NO2和N3的物质, 而只含N3的物质的稳定性又好于只含NO2的物质, 五叠氮苯和六叠氮苯具有很出色的爆轰性能和稳定性. 无论是能量还是稳定性方面, 筛选得到的11种物质基本符合HEDC的要求.  相似文献   

6.
运用密度泛函理论(DFT)方法对7-吡啶吲哚衍生物的结构及电子光谱性质进行了理论研究.在B3LYP/6-31G(d)水平上得到了7-吡啶吲哚(M)以及5种共轭衍生物(a-e)的几何构型、电子布局以及前线分子轨道;应用含时密度泛函理论(TD-DFT)在B3LYP/6-31+G(d)水平上计算了5种衍生物的电子光谱性质.结果表明,共轭体系的π键成分增大,能级差减小,激发能降低,分子的最大激发波长向长波方向移动,即发生红移.但是,如果分子中的空间位阻增大,则共轭程度降低,发生蓝移.前线分子轨道分析表明该类化合物吸收光谱主要对应分子中的HOMO→LUMO电子跃迁,且为π-π*跃迁.为新型含吲哚基团的光电功能材料的设计合成提供了理论参考.  相似文献   

7.
设计了一系列双(3,4,5-取代吡唑基)甲烷衍生物作为高能量密度材料的候选物.用密度泛函理论研究了它们的生成热、电子结构、能量特性和热稳定性.二氟氨基能增加目标化合物的电子结构、密度和爆轰性能的能隙.其中二[3,5-双(二氟氨基)-4-硝基吡唑]甲烷(C2)显示了优异的潜在高能量密度材料的性能,其晶体密度(2.11g/cm3)、冲击感度(h50,6.8 J)均高于六硝基六氮杂异伍兹烷(CL-20),而爆速(9.80 km/s)和爆压(46.62 GPa)与CL-20非常接近.  相似文献   

8.
双环-HMX结构和性质的理论研究   总被引:7,自引:2,他引:5  
在DFT-B3LYP/6-311G*水平上, 计算研究了高能化合物四硝基四氮杂双环辛烷(双环-HMX) α和β两种异构体的结构和性质. 比较分子对称性、分子内氢键和环张力等几何参数以及分子总能量和前线轨道能级等电子结构参数, 发现α比β稳定. 分子中N—N键较长, N—N键集居数较小, 预示该键为热解和起爆的引发键. 基于简谐振动分析求得IR谱频率和强度. 运用统计热力学方法求得200~1000 K温度的热力学性质. 以非限制性半经验PM3方法探讨其热解机理, 求得各反应通道的过渡态和活化能, 发现热解始于侧链N—NO2键的均裂. 还从理论上预测了该化合物的密度、爆速和爆压, 有助于寻求高能量密度材料(HEDM).  相似文献   

9.
用密度泛函理论方法研究了镥二聚体(Lu2)低能量电子态的性质,计算了电子态相对能量、平衡键长、振动频率以及基态解离能,考察了密度泛函性质、相对论有效势种类以及Hartree—Fock交换作用大小对计算结果的影响.结果表明,无论采用何种密度泛函和相对论有效势,体系的基态都为三重态,与其他一些基于分子轨道理论的从头计算方法得到的结论是一致的.另外,与分子轨道从头计算结果以及实验结果比较发现,采用杂化密度泛函理论和Stuttgart小核有效势计算得到的结果总体吻合最好.最后,特别分析研究了B3LYP计算中Hartree—Fock交换作用大小对基态键长和基态解离能的影响,发现随着交换作用的增大,键长增长,解离能减小,这是由于5d轨道杂化导致的共价成键作用减弱造成的.  相似文献   

10.
陈沫  宋纪蓉  马海霞 《化学通报》2015,78(6):532-541
运用DFT-w B97/6-31+G**方法对23种1,2,4,5-四嗪衍生物的几何结构、自然键轨道(NBO)和生成焓(EOF)进行研究,并在此基础上运用Kamlet-Jacobs方程估算衍生物的爆轰性能,得到其爆速在6.69~9.37 km/s之间;基于统计热力学,求得部分标题化合物在200~800 K温度范围内的热力学性质,随温度T升高,热容Cp、熵Sm及焓Hm逐渐增大。根据最小键级理论,C-R(取代基)键和N-R键可能是1,2,4,5-四嗪衍生物高温裂解的热引发键。综合分析,基团-NO2、-N3和-N=N-有助于提高四嗪衍生物的生成焓和爆轰性能,3,6-二硝基-1,2,4,5-四嗪和3,6-二偶氮基-二硝基-1,2,4,5-四嗪从能量、爆轰性能上可以作为高能量密度材料候选物。  相似文献   

11.
Density functional theory has been used to investigate geometries, heats of formation (HOFs), C-NO2 bond dissociation energies (BDEs), and relative energetic properties of nitro derivatives of azole substituted furan. HOFs for a series of molecules were calculated by using density functional theory (DFT) and Møller–Plesset (MP2) methods. The density is predicted using crystal packing calculations; all the designed compounds show density above 1.71 g/cm3. The calculated detonation velocities and detonation pressures indicate that the nitro group is very helpful for enhancing the detonation performance for the designed compounds. Thermal stabilities have been evaluated from the bond dissociation energies. Charge on the nitro group was used to assess the impact sensitivity in this study. According to the results of the calculations, tri- and tetra-nitro substituted derivatives reveal high performance with better thermal stability.  相似文献   

12.
The tetrazole is an important functionality of the most of energetic materials due to 80% nitrogen content, stability, and high enthalpy of formation. The present structure–property relationship study focuses on the optimized geometries of tetrazole derivatives obtained from density functional theory (DFT) calculations at B3LYP/6-31G* levels. The heat of formation (HOF) of tetrazole derivatives have been calculated by designing the appropriate isodesmic reactions. The increase in nitro groups on azole rings shows the remarkable increase in HOF. Density has been predicted by using CVFF force field. Increase in the nitro group increases the density. Detonation properties of the designed compounds were evaluated by using the Kamlet–Jacobs equation based on predicted densities and HOFs. Designed tetrazole derivatives show detonation velocity (D) over 8 km/s and detonation pressure (P) of about 32 GPa. Thermal stability was evaluated via bond dissociation energies (BDE) of the weakest C–NO2 bond at B3LYP/6-31G* level. Charge on the nitro group has been used to assess the sensitivity correlation. Overall, the study implies that designed compounds of this series are found to be stable and expected to be the novel candidates of high energy materials (HEMs).  相似文献   

13.
The characters of high density and high heat of formation of cage molecules have attracted a lot of investigations as potential energetic materials. Several such compounds have been synthesized, e.g., octanitrocubane, hexanitrohexaazaisowurzitane (CL-20), and 4-trinitroethyl-2, 6, 8, 10, 12-pentanitrohexaazaisowurtzitane(TNE-CL-20). In the present study, a new cage compound, namely 2, 4, 6, 8, 10, 12, 13-heptaazatetracyclo [5.5.1.03,11.05,9] tridecane (HATT), was proposed. Density functional theory has been employed to study the geometric and electronic structures for a series of nitro derivatives of HATT at the B3LYP/6-31G(d,p) level. Thermodynamic properties derived on the basis of statistical thermodynamic principles are linearly correlated with the numbers of nitro group as well as the temperature. Detonation performance was evaluated based on the calculated densities and heats of formation. It is found that some title compounds have high densities of ca. 1.9 g cm?3, detonation velocities over 9.0 km s?1, and detonation pressures of about 40.0 GPa and may be novel potential candidates of high energy density compounds (HEDCs). Thermal stability and pyrolysis mechanism of the nitro HATTs were investigated by calculating the bond dissociation energies (BDE). In conjunction with the detonation performance and thermal stability, HATTs with no less than five nitro groups are recommended as the preferred candidates of HEDCs. These results provide basic information for the further studies of cage compounds.  相似文献   

14.
To look for superior and safe high energy density compounds (HEDCs), 2,2',4,4',6,6'-hexanitroazobenzene (HNAB) and its -NO(2), -NH(2), -CN, -NC, -ONO(2), -N(3), or -NF(2) derivatives were studied at the B3LYP/6-31G* level of density functional theory (DFT). The isodesmic reactions were applied to calculate the heats of formation (HOFs) for these compounds. The theoretical molecular density (ρ), detonation energy (E(d)), detonation pressure (P), and detonation velocity (D), estimated using the Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. The effects of substituent groups on HOF, ρ, E(d), P, and D were studied. The order of contribution of the substituent groups to P and D was -NF(2) > -ONO(2) > -NO(2) > -N(3) > -NH(2). Sensitivity was evaluated using the nitro group charges, frontier orbital energies, and bond dissociation enthalpies (BDEs). The trigger bonds in the pyrolysis process for all these HNAB derivatives may be Ring-NO(2), Ring-N═N, Ring-NF(2), or O-NO(2) varying with the attachment of different substituents. BDEs of trigger bonds except those of -ONO(2) derivatives are relatively large, which means these compounds suffice the stability request of explosives. Taking both detonation properties and sensitivities into consideration, some -NF(2) and -NO(2) derivatives may be potential candidates for HEDCs.  相似文献   

15.
Based on the successful experience of synthesis of the TATB (1, 3, 5-triamino-2, 4, 6-trinitrobenzene) and cubane, we propose to consider their nitro derivatives combined by C–N bond as a series of high energy density compounds. First principles molecular orbital calculations have been used to investigate the structural and energetic properties, including the heat of formation, density, detonation performance, and impact sensitivity. Natural bond orbital analysis was carried out to investigate the influence of substituents on the electron delocalization. The results implied that the inclusion of nitro group will decrease the stability of cage skeleton and weaken the C–NO2 bond. The calculated heats of formation, density, detonation velocity, and detonation pressure are positive and large. The results revealed that two of five derivatives have the close performance and sensitivity to those of CL-20, indicating that they may be explored as new potential high energy materials. Leave them with the notable value to dig out.  相似文献   

16.
The nitro derivatives of phenols are optimized to obtain their molecular geometries and electronic structures at the DFT‐B3LYP/6‐31G* level. Detonation properties are evaluated using the modified Kamlet–Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of nitro and hydroxy groups. Thermal stability and pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDEs) at the unrestricted B3LYP/6‐31G* level. The activation energies of H‐transfer reaction is smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from breaking O? H bond followed by the isomerization reaction of H transfer. Moreover, the C? NO2 bond with the smaller bond overlap population and the smaller BDE will also overlap may be before homolysis. According to the quantitative standard of energetics and stability as a high‐energy density compound, pentanitrophenol essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and hydroxy groups on the static electronic structural parameters and the kinetic parameter. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
Ninety‐one nitro and hydroxyl derivatives of benzene were studied at the B3LYP/6‐31G?? level of density functional theory. Detonation properties were calculated using the Kamlet‐Jacobs equation. Three candidates (pentanitrophenol, pentanitrobenzene, and hexanitrobenzene) were recommended as potential high energy density compounds for their perfect detonation performances and reasonable stability. The pyrolysis mechanism was studied by analyzing the bond dissociation energy (BDE) and the activation energy (Ea) of hydrogen transfer (H–T) reaction for those with adjacent nitro and hydroxyl groups. The results show that Ea is much lower than BDEs of all bonds, so when there are adjacent nitro and hydroxyl groups in a molecule, the stability of the compound will decrease and the pyrolysis will be initiated by the H–T process. Otherwise, the pyrolysis will start from the breaking of the weakest C–NO2 bond, and only under such condition, the Mulliken population or BDE of the C–NO2 bond can be used to assess the relative stability of the compound.  相似文献   

18.
Bond dissociation energies (BDEs) for some nitro or amino contained prototypical molecules in energetic materials are computed by fixed‐node diffusion quantum Monte Carlo method. The nodes are determined from a Slater determinant calculated within density functional theory at the B3LYP/6‐311G** level. The possible errors, the nodal error, and the cancellation of nodal errors in calculating BDE are discussed, and the accuracy is compared with other available ab initio computations and experimental results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
利用B3LYP/6-311+G(2d,p)方法对一种新型含能增塑剂双(2,2-二硝基丙基)甲缩醛进行几何优化,计算了其红外光谱、生成焓和爆轰特性. 分析了最弱键的键离解能和键级并预测了目标化合物的热稳定性. 结果表明双(2,2-二硝基丙基)甲缩醛中的四个N-NO2键的键离解能都为164.38 kJ/mol. 表明目标化合物是一个热力学性能稳定的化合物. 以凝聚相生成焓和分子密度为基础,采用Kamlet-Jacobs方法预测其爆速和爆压. 目标化合物的晶体结构属于P21空间群.  相似文献   

20.
Bicyclo[1.1.1]pentane is a highly strained hydrocarbon system due to close proximity of nonbonded bridge head carbons. Based on fully optimized molecular geometries at the density functional theory using the B3LYP/6-31G* level, densities, detonation velocities, and pressures for a series of polynitrobicyclo[1.1.1]pentanes, as well as their thermal stabilities were investigated in search for high energy density materials (HEDMs). The designed compounds with more than two nitro groups are characterized by high heat of formation and magnitude correlative with the number and space distance of nitro groups. Density was calculated using the crystal packing calculations and an increase in the number of nitro groups increases the density. The increase in density shows a linear increase in the detonation characteristics. Bond dissociation energy was analyzed to determine thermal stability. Calculations of the bond length and bond dissociation energies of the C-NO2 bond indicate that this may be the possible trigger bond in the pyrolysis mechanism. 1,2,3-Trinitrobicyclo[1.1.1]pentane (S3), 1,2,3,4-tetranitrobicyclo[1.1.1]pentane (S4), and 1,2,3,4,5-pentanitrobicyclo[1.1.1]pentane (S5) have better energetic characteristics with better stability and insensitivity, and as such may be explored in defense applications as promising candidates of the HEDMs series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号