首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
选择氧化催化剂通常为多组分复合氧化物.一般认为,高价过渡金属的端末双键氧(M=O)是烷烃活化的中心,而非金属端氧(NM=O)与烷烃活化无关.但近期的理论研究发现,复合氧化物中非金属端氧也可能参与烷烃活化.本文采用密度泛函方法(B3LYP)对比V=O和P=O的脱氢活性,并深入揭示二者的差异.H脱除反应可以视为是质子偶联电子传递的过程.对于V/P复合氧化物,V5+充当电子的受体,而V=O和P=O均可接受质子.由于P=O具有更强的质子化能力,导致PO–H键能比VO–H有利6–10 kcal/mol.对于烷烃活化,V=O和P=O脱氢的能垒均可与反应焓变很好地关联,但二者线性回归的截距相差6.2 kcal/mol,说明在相同的焓驱动下,P=O脱氢需要克服更高的能垒.根据Marcus模型,反应的能垒不仅取决去反应焓变,还与内部重组能有关.计算表明,在脱氢过程中,P=O需克服的重组能为128–140 kcal/mol,比V=O过程高出21–23 kcal/mol.这很好地解释了前面的计算结果.应该指出的是,除了反应热力学驱动和重组能外,在势能曲线相交处的电子耦合作用(?HAB?)亦对能量有一定的影响.丁烷选择氧化制顺酐可能经过2-丁烯,丁二烯,2,5-二氢呋喃和丁烯酸内酯等一系列中间体,共有8个H原子在反应过程中需要脱除.对于丁烷的脱氢,P=O的能垒仅比V=O低1.3 kcal/mol,说明初始反应时二者是竞争的.但对于2-丁烯和2,5-二氢呋喃,二者活化能的差距增加为6–7 kcal/mol,说明这时P=O脱氢将占主导.而对丁烯酸内酯活化,二者活化能的差异又缩小到2.5 kcal/mol,表明V=O又具有一定的竞争力.事实上,这种能垒的差异与端氧的亲核性密切相关.P=O更具亲核性,因此有利于被更具酸性的C–H键进攻.根据Evens的估计,烷烃C–H键的p Ka为50左右,而烯丙基性C–H为43.这就很好地解释了为什么2-丁烯和2,5-二氢呋喃更容易和P=O发生反应,而丁烷脱氢二者差异不大的原因.这些理论研究可以加深我们对复合氧化物催化剂上活性位点的认识,并为催化剂的理性设计提供理论支撑.  相似文献   

2.
钌催化剂RuH_2(CO)(PPh_3)_3使Murai反应中芳香酮β位C–H键的催化活化反应具有极高的产率与选择性.本文采用密度泛函(DFT)方法研究了钌配合物催化芳香酮邻位C–H键活化的反应机理,剖析了芳香酮C–H键活化反应中产生区域选择性的原因.计算结果表明,C–H键的活化位垒为1.1 kcal/mol,从反应动态学角度很好地解释了该反应的区域选择性.通过路径a与路径b的比较,发现C=C双键更容易插入到Ru–H键而不是Ru–C键中.另外,无论C–C键形成(C–C活化过程)出现在路径a的烯烃插入基元反应,还是出现在路径b的还原消除基元反应,C–C键形成步骤都是整个催化反应的决速步骤.与路径a和b比较,反应路径c中C–C键形成过程的空间位阻较大,能垒也更高.  相似文献   

3.
正丁烷在VMgO和Ni-VMgO催化剂上氧化脱氢   总被引:3,自引:0,他引:3  
刘睿  王新平  贾翠英  施维 《催化学报》2005,26(8):650-654
 采用4种方法制备了VMgO催化剂样品(w(V2O5)=30%,w(MgO)=70%),并将其用于正丁烷氧化脱氢气固相反应. 结果表明,MgO经蒸馏水回流和焙烧处理后再用NH4VO3溶液浸渍所制得的VMgO,对正丁烷氧化脱氢生成丁烯和丁二烯反应具有更好的催化性能. 这是由于用该法制备的VMgO催化剂中存在较多的Mg3V2O8物种. 通过添加Ni对VMgO催化剂进行了改性. 结果表明,适量添加Ni(n(Ni)/n(V)=0.3)有利于催化剂中Mg3V2O8的生成,而Ni以Ni3V2O8的形态存在. 由此明显改善了VMgO催化剂对正丁烷氧化脱氢生成丁烯和丁二烯反应的催化性能.  相似文献   

4.
采用5T簇模型,利用密度泛函理论在B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d)水平下研究正丁烷在酸性分子筛上的单分子催化裂解反应。本文重点详细研究了正丁烷在分子筛表面不同C位的脱氢反应。在B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d)水平下计算所得第一和第二位C-C键裂解的活化能垒分别为 238、217 kJ/mol。而第一第二序位脱氢反应能垒分别为296、242 kJ/mol。正丁烷不同序位脱氢反应的活化能垒相差54 kJ/mol。从计算结果可以看出,正丁烷在分子筛上催化裂解脱氢反应优先发生在第二位C原子上。此外,本文还讨论了簇模型结构与酸性的关系,结果显示改变封端Si-H键的键长的方法可以用来模拟分子筛酸性变化。最后研究了分子筛酸性变化与正丁烷催化裂解反应能垒的关系。  相似文献   

5.
为了在分子层次上揭示相关催化反应的机理,人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究.相比于过渡金属氧化物团簇阳离子,阴离子对一些碳氢化合物的活性弱得多,因此研究还很少.在本工作中,我们通过激光溅射产生钒氧团簇阴离子VxOy-,产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6)在一个快速流动反应管中进行反应,飞行时间质谱用来检测反应前后的团簇分布.在VxOy-与烷烃的反应中,生成了产物V2O6H-和V4O11H-;在与烯烃的反应中,产生了相应的吸附产物V4O11X-(X=C2H4或C3H6).密度泛函理论计算表明:V2O6-和V4O1-1可以活化烷烃(C2H6和C4H10)的C-H键,也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-),C-H键活化与环加成反应都需经历可以克服的反应能垒.理论计算与实验观测结果相符合.V2O6-和V4O1-1团簇都具有氧原子自由基(O·或O-)的成键特征,活性O-物种也经常出现在钒氧催化剂表面,因而本研究在分子水平上,揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

6.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

7.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

8.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

9.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

10.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

11.
采用密度泛函理论研究了过渡金属钒族氧化物阳离子团簇(M2O5)+m=1,2(M=V, Nb, Ta)与C2H4气相反应机理. 反应为(M2O5)m++C2H4→(M2O5)m-1M2O4++C2H4O, 反应物先化合生成C—O键相连的化合物, 经过过渡态后M—O键断裂, 从而发生氧原子转移到碳氢化合物上的反应. 对于V2O5+与C2H4的反应, 存在经顺式和反式两种过渡态结构路径, 从能量上看, 经反式过渡态结构的路径更有利. 计算结果表明, 发生反应时C2H4与钒氧化物阳离子反应大量放热, 而与铌、钽氧化物阳离子反应却放热较少甚至不放热, 这与实验结果一致. 钒、铌、钽氧化物阳离子团簇发生氧转移反应活性不同的原因是金属-氧键的强弱不同所致.  相似文献   

12.
The halogenated hydrocarbon amination reaction between the original raw material N-((6-bromo-2-methoxyquinolin-3-yl)(phenyl)methyl)-3-chloro-N-(1-adamantyl) propanamide and dimethylamine hydrochloride produces the target molecule N-((6-bromo-2-methoxyquinolin-3- yl)(phenyl)methyl)-N-(1-adamantyl)-3-(dimethylamino) propanamide (C32H38BrN3O2, Mr = 576.56), and its structure was confirmed by elemental analysis, IR, 1H NMR, MS, and X-ray diffraction. This crystal is of monoclinic system, space group P21/c with a = 10.760(5), b = 14.768(5), c = 19.635(5), β = 113.969(16)°, V = 2851.0(18)3, Z = 4, Dc = 1.343 g/cm3, F(000) = 1208, μ(MoKα) = 1.475 mm-1, the final R = 0.0645 and wR = 0.2039. In total, 4681 independent reflections including 3164 observed ones with I > 2σ(I) were collected. The dihedral angle between substituted quinolyl and phenyl is 64.0°. Through C-H···O, C-H···N and C-H···Br weak hydrogen bonds among molecules, the whole molecule is stacked into a three-dimensional structure. The optimized geometric bond lengths and bond angles obtained by using density functional theory (DFT) have been compared with X-ray diffraction values. In addition, the preliminary biological test showed that the title compound has anti-Mycobacterium phlei 1180 activity.  相似文献   

13.
1 INTRODUCTION Procedures to synthesize copper(I) complexes are of great interest due to the diversity of products resulting from almost the same methodology. It has been long known that four-electron-donordipho- sphine compounds Ph2P(CH2)nPPh2 are excellent bi- dentate ligands[1, 2]. The chelating tendency of bis- (diphenylphosphino) methane is one of the dipho- sphine ligands most suitable to lock two metal atoms together in close proximity[3]. Many examples of bi- or polynuclear com…  相似文献   

14.
采用密度泛函理论研究了PtnRum (n+m=3, n≠0)团簇活化甲醇C―H和O―H键的反应活性和机理. 分别给出以O―H和C―H键活化为初始步骤的势能曲线. 计算结果表明反应是以C―H键的活化为初始步骤; 三种团簇与甲醇反应的活性顺序为Pt2Ru>Pt3>PtRu2. 前线轨道分析表明PtnRum团簇活化初始的C―H和O―H键的活化过程是质子转移(PT). 此外还讨论了溶剂化对反应的影响. 本研究可为C―H键和O―H键的活化提供更深入的理解, 为甲醇活化反应催化剂选择以及其使用条件的优化提供新思路.  相似文献   

15.
吴琼洁  刘世雄 《结构化学》2004,23(10):1177-1182
本文合成了含水杨醛缩对硝基苯甲酰腙(简写为H2L)的钒酰配合物VOL(CH3OH)(CH3O)(1,C16H16N3O7V,Mr=413.26)和钴配合物[CoL(C5H5N)3]NO3C5H5N(2,C34H29N8O7Co,Mr=720.58)。配合物1属单斜晶系,空间群为P21/c,a=7.3253(3),b=18.8237(9),c=12.9014(5)?b=91.672(1),V=1778.2(1)3,Z=4,F(000)=848,m(MoKa)=0.603mm1,R=0.0470,wR=0.1312。配合物2属单斜晶系,空间群为P21/c,a=11.4196(8),b=17.157(1),c=17.081(1)?b=96.8233(9),V=3323.0(4)3,Z=4,F(000)=1488,m(MoKa)=0.578mm1,R=0.0455,wR=0.1311。在配合物1中,钒(V)原子由周围的酰氧基原子、配体L2的3个配位原子,去质子化甲醇的甲氧基原子和配位甲醇的氧原子配位,形成畸变的VO(ONO)(O)(O)八面体配位构型。晶体内每2个分子间通过氢键作用缔合成中心对称的分子对,OH…N氢键键长为2.861(4)?键角163.20。晶体中存在着弱p-p共轭作用。在配合物2中,钴(Ⅲ)原子由1个L2的3个配位原子和3个配位吡啶分子的3个氮原子配位,呈N4O2八面体配位构型。  相似文献   

16.
The mechanism for the activation of the sigma bonds, the O-H of H2O, C-H of CH4, and the H-H of H2, and the pi bonds, the C[triple bond]C of C2H2, C=C of C2H4, and the C=O of HCHO, at the Pd=X (X = Sn, Si, C) bonds of the model complexes (H2PC2H4PH2)Pd=XH2 5 has been theoretically investigated using a density functional method (B3LYP). The reaction is significantly affected by the electronic nature of the Pd=X bond, and the mechanism is changed depending on the atom X. The activation of the O-H bond with the lone pair electron is heterolytic at the Pd=X (X = Sn, Si) bonds, while it is homolytic at the Pd=C bond. The C-H and H-H bonds without the lone pair electron are also heterolytically activated at the Pd=X bonds independent of the atom X, where the hydrogen is extracted as a proton by the Pd atom in the case of X = Sn, Si and by the C atom in the case of X=C because the nucleophile is switched between the Pd and X atoms depending on the atom X. In contrast, the pi bond activation of C[triple bond]C and C=C at the Pd=Sn bond proceeds homolytically, and is accompanied by the rotation of the (H2PC2H4PH2)Pd group around the Pd-Sn axis to successfully complete the reaction by both the electron donation from the pi orbital to Sn p orbital and the back-donation from the Pd dpi orbital to the pi orbital. On the other hand, the activation of the C=O pi bond with the lone pair electron at the Pd=Sn bond has two reaction pathways: one is homolytic with the rotation of the (H2PC2H4PH2)Pd group and the other is heterolytic without the rotation. The role of the ligands controlling the activation mechanism, which is heterolytic or homolytic, is discussed.  相似文献   

17.
The molecular mechanism of the reactions between four carbonyl oxides and ammonia/water are investigated using the M06-2X functional together with 6-311++G(d,p) basis set. The analysis of activation and reaction enthalpy shows that the exothermicity of each process increased with the substitution of electron donating substituents (methyl and ethenyl). Along each reaction pathway, two new chemical bonds C−N/C−O and O−H are expected to form. A detailed analysis of the flow of the electron density during their formation have been characterized from the perspective of bonding evolution theory (BET). For all reaction pathways, BET revealed that the process of C−N and O−H bond formation takes place within four structural stability domains (SSD), which can be summarized as follows: the depopulation of V(N) basin with the formation of first C−N bond (appearance of V(C,N) basin), cleavage of N−H bond with the creation of V(N) and V(H) monosynaptic basin, and finally the V(H,O) disynaptic basin related to O−H bond. On the other hand, in the case of water, the cleavage of O−H bond with the formation of V(O) and V(H) basins is the first stage, followed by the formation of the O−H bond as a second stage, and finally the creation of C−O bond.  相似文献   

18.
1 INTRODUCTION The chemistry of polyoxometalates has been at- tracting much attention due to the richness in their structures, electron and proton storage abilities, ther- mal stability and applications in catalysis, medicine and surface sciences[1~3]. In recent years, the mixed- valence as well as full oxidized vanadium polyoxo- anions have been crystallized with a variety of orga- nic molecules as counteranions[4~8]. However, the guiding principles of the crystal structures of poly- o…  相似文献   

19.
Methane activation by transition metal species has been extensively investigated over the past few decades. It is observed that ground-state monocations of bare 3d transition metals are inert toward CH4 at room temperature because of unfavorable thermodynamics. In contrast, many mono-ligated 3d transition metal cations, such as MO+ (M = Mn, Fe, Co, Cu, Zn), MH+ (M = Fe, Co), and NiX+ (X = H, CH3, F), as well as several bis-ligated 3d transition metal cations including OCrO+, Ni(H)(OH)+, and Fe(O)(OH)+ activate the C―H bond of methane under thermal collision conditions because of the pronounced ligand effects. In most of the above-mentioned examples, the 3d metal atoms are observed to cooperate with the attached ligands to activate the C―H bond. Compared to the extensive studies on active species comprising of middle and late 3d transition metals, the knowledge about the reactivity of early 3d transition metal species toward methane and the related C―H activation mechanisms are still very limited. Only two early 3d transition metal species HMO+ (M = Ti and V) are discovered so far to activate the C―H bond of methane via participation of their metal atoms. In this study, by performing mass spectrometric experiments and density functional theory calculations, we have identified that the diatomic vanadium boride cation (VB+) can activate methane to produce a dihydrogen molecule and carbon-boron species under thermal collision conditions. The strong electrostatic interaction makes the reaction preferentially proceed the V side. To generate experimentally observed product ions, a two-state reactivity scenario involving spin conversion from high-spin sextet to low-spin quartet is necessary at the entrance of the reaction. This result is consistent with the reported reactions of 3d transition metal species with CH4, in which the C―H bond cleavage generally occurs in the low-spin states, even if the ground states of the related active species are in the high-spin states. For VB+ + CH4, the insertion of the synergetic V―B unit (rather than a single V or B atom) into the H3C―H bond causes the initial C―H bond activation driven by the strong bond strengths of V―CH3 and B―H. The mechanisms of methane activation by VB+ discussed in this study may provide useful guidance to the future studies on methane activation by early transition metal systems.  相似文献   

20.
<正> N-(para-chloro)-phenyl iminodiacetic acid hydrate ethanol solvate ClC6H4N(CH2COOH)2· H2O·C2H5OH, Mr = 307.73, monoclinic, P21/n, Cu-Ka (λ=1. 5410(?)), a = 16. 732(1), b = 5. 337(1), c=16. 300(1)(?) ,β=108. 52(1)°, V = 1380. 1(?)3, Z = 4, Dc=1.481g.cm-3, * = 27. 172cm-1, F(000) = 648, final R = 0. 072 for 1610 observed reflections. The crystal structure consists of discrete molecule of N-(para-chloro)-phenyl iminodiacetic acid, hydrate as well as ethanol solvate. A big ring consisting of atoms O(3), C(3), C(4), N(1), C(2), C(1), O(2) and H(2) is nearly planar with the maximum deviation of the atom N(1) of 0. 54 (?). Owing to the intramolecular hydrogen bond O(2)-H(2)…O(3) , the bond C(3) -O(3) in the COOH group is longer than the bond C(3)-O(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号