首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
利用"同轴电喷-去模板技术"制备了载药效率接近100%,且具有核-壳结构和氧化还原响应性的药物控释微球.首先通过同轴电喷技术,制备了以聚乙二醇(PEG)为壳,主链含多个二硫键的聚醚氨酯(PEU)为核的微球.通过"去模板"方法,脱去PEG层,可以使所制备的微球的尺寸从微米减小到纳米尺度.在含二硫苏糖醇(DTT)的媒介中,PEU可以快速降解.体外释药的结果显示,在含谷胱甘肽(GSH)的媒介中,载药纳米微球可在12 h内将其所包载的药物的80%释放出,具有显著的氧化还原响应性控制释放药物的特征.  相似文献   

2.
采用一种简单和低成本的方法制备单分散SiO2包覆聚苯乙烯(PS)(PS/SiO2)核-壳型纳米复合微球.首先在聚乙烯吡咯烷酮(PVP)存在下制备了PS纳米微球,然后在NH4OH/乙醇溶液中通过溶胶-凝胶过程在PS微球表面包覆SiO2.PS纳米微球的制备在水介质中进行,无需使用共单体,使用的是常用的过硫酸钾自由基引发剂;包覆处理前不用进行溶剂交换或离心处理.研究了PVP,NH4OH和原硅酸乙酯(TEOS)的用量对PS/SiO2纳米复合微球尺寸和形态的影响.随着PVP用量增加,PS微球变小,因此得到较小的PS/SiO2纳米复合微球;NH4OH用量对SiO2包覆层的厚度没有影响,但对SiO2包覆层的表面形态有影响,随着NH4OH用量增加包覆层表面变得粗糙;随着TEOS溶液用量增加,生成的SiO2增加,其包覆层的厚度增加.  相似文献   

3.
以反相悬浮聚合技术合成的丙烯酰胺(acrylamide,AM)和甲基丙烯酸(methacrylic acid,MAA)共聚高分子微凝胶P(AM-co-MAA)为模板,通过离心沉积法将微米级钨粉沉积于高分子微凝胶表面,得到具有核-壳结构的P(AM-co-MAA)/W复合微球材料;再以P(AM-co-MAA)/W复合微球为模板,通过控制甲醛和尿素的缩聚反应在模板与油/水相界面进行,制备得到了具有多层核-壳结构的高分子/钨/脲醛树脂[P(AM-co-MAA)/W/Urea-formaldehyde resin]复合微球材料.利用扫描电子显微镜(SEM)、红外(FT-IR)、X射线衍射(XRD)和热分析(TGA)等手段对复合微球进行了表征.实验结果表明,外壳层脲醛树脂的包覆量、复合微球的表面形貌可通过改变甲醛和尿素溶液的浓度、甲醛和尿素的物质的量之比等因素进行控制.复合微球的导电性测试结果表明,P(AM-co-MAA)/W复合微球表面壳层脲醛树脂包覆前后,其电导率由1.9×10-3降低为0.9×10-8S·m-1.该研究获得的三层核-壳复合微球材料其外层脲醛树脂的包覆较为完整、致密,其导电性接近于绝缘材料,为含钨复合微球作为电子元件的抗辐射涂层材料打下了基础.  相似文献   

4.
孙莉峰  张颖  吴华涛  房喻  胡道道 《化学学报》2008,66(11):1293-1300
将高分子微凝胶模板法应用于制备脲醛树脂[Urea-formaldehyde resin (UF Resin)]-聚丙烯酰胺[Polyacrylamide (PAM)]有机-有机复合微球材料. 以PAM高分子微凝胶为模板, 通过控制甲醛和尿素的缩聚反应在反相悬浮体系中进行, 制备得到了具有新颖表面形貌的脲醛树脂-聚丙烯酰胺[UF Resin/PAM]有机-有机复合微球, 利用扫描电子显微镜(SEM)、热重分析(TGA)、红外(FT-IR)等手段对复合微球进行了表征. 实验结果表明, 复合微球的表面形貌与甲醛和尿素溶液的pH值、甲醛和尿素溶液的浓度、甲醛和尿素的摩尔比、模板的组成等因素有关. 可以预期, 本研究方法将为制备具有特异表面形貌的有机-有机复合微球材料提供了一条有效的途径.  相似文献   

5.
首先用聚乙烯亚胺(PEI)对粒径为360 nm的单分散无皂聚苯乙烯(PSt)乳胶粒进行修饰,得到表面荷正电的PSt种子乳液,然后将其滴加到溶有钛酸正丁酯(TBT)的乙醇与水的混合介质中,通过溶胶-凝胶(sol-gel)法制备出了核壳结构PSt/TiO2复合微球,系统研究了体系pH和TBT用量对复合微球结构形态的影响.研究表明,酸性条件不利于核壳结构PSt/TiO2复合微球的形成;当体系pH值为7.2时,可得到包覆完整、TiO2壳层厚度均一的PSt/TiO2复合微球,此后随着体系pH值的升高,包覆厚度逐渐提高;当pH值升高到11.0时,壳层厚度达到最大,但出现了包覆层不完整的复合微球.在固定聚合体系pH为8.5,EtOH/H2O质量比为100/6,表面修饰PSt种子乳液用量为0.5 g(固含量为4%)的条件下,随着TBT用量从0.01 g增加到0.16 g,复合微球壳层厚度从约0 nm逐渐增加到60 nm;当TBT用量增加到0.32 g时,壳层厚度迅速降至12nm,微球表面变得粗糙,并出现大量未包覆微粒;此后随着TBT用量的增加,包覆层厚度逐渐减少,未包覆微球逐渐增多.结果显示,当复合微球中TiO2包覆层达到一定厚度时,经煅烧后才能得到形貌完整的TiO2中空微球.  相似文献   

6.
硫化物-高分子复合微球表面形貌与模板组成关系的研究   总被引:2,自引:0,他引:2  
以N-异丙基丙烯酰胺(NIPAM)和甲基丙烯酸(MAA)为单体, 通过反相悬浮聚合法制备了多种MAA含量不同的阴离子型P(NIPAM-co-MAA)共聚微凝胶. 以这些共聚微凝胶为模板, 在不同表面活性剂存在下, 合成了一系列CuS(CdS、ZnS)-P(NIPAM-co-MAA)无机-有机复合微球材料, 研究了表面活性剂种类, 模板组成等因素对上述硫化物-高分子复合微球表面形貌的影响. 结果表明, 实验条件下所得复合微球表面均具有图案化结构, 该结构明显依赖于表面活性剂的种类和模板微凝胶的组成. 就模型体系而言, 随表面活性剂Span-20、Span-80和Span-85的HLB(亲水亲油平衡)值降低, 微球表面形貌趋于粗糙, 但仍然十分规整; 就模板组成而言, 模板中MAA含量增加使得复合微球的表面形貌变得更加精细. 据此, 认为通过选用合适的表面活性剂和微凝胶模板可以在一定范围内调控这些无机-有机复合微球的表面形貌, 从而为后续应用研究奠定基础.  相似文献   

7.
制备方法对模板法制备SiO_2中空微球形貌的影响   总被引:1,自引:0,他引:1  
模板法是制备无机中空微球的重要方法之一.首先通过苯乙烯和甲基丙烯酸的无皂乳液聚合法制得表面含羧基、粒径为360nm的单分散聚苯乙烯(PSt)乳胶粒,并以此为模板,分别采用表面改性-前驱体水解法(PHC)和SiO2纳米颗粒层层自组装法(LBL),制备出了不同壳层厚度的PSt/SiO2核壳结构复合微球,然后经500℃煅烧4h,得到SiO2中空微球.利用透射电镜和扫描电镜对微球结构形态进行了表征.研究表明,首先利用γ-氨丙基三乙氧基硅烷(KH-550)对PSt模板微球进行表面改性、然后再在乙醇-水混合介质中进行原硅酸乙酯(TEOS)水解与缩合反应的PHC法,是制备PSt/SiO2核壳结构复合微球的简便方法,复合微球经煅烧可制得表面均匀、结构致密、壳层厚度和形貌可控的SiO2中空微球;而LBL法制备PSt/SiO2核壳结构复合微球的工艺复杂,煅烧后所得SiO2中空微球结构疏松,易于破碎.  相似文献   

8.
结合大分子自组装和原位自由基聚合方法,采用油溶性引发剂偶氮二异丁腈(AIBN),在聚(ε-已内酯)(PCL)纳米粒子表面引发聚合单体N-异丙基丙烯酰胺(NIPAM)和交联剂亚甲基双(丙烯酰胺)(MBA),制备得到了核-壳结构的PCL/PNIPAM聚合物纳米微球.系统研究了单体和交联剂用量、壳层目标交联度、初始PCL/DMF溶液的浓度及引发剂AIBN含量4个反应参数对核-壳结构PCL/PNIPAM纳米微球的PNIPAM壳层得率、微球尺寸、温敏性能及电镜形貌的影响.结果表明,在制备核-壳结构PCL/PNIPAM纳米微球的反应过程中,PCL粒子表面的聚合和水中的聚合二者之间相互竞争.适当增加引发剂AIBN的添加量,有利于制备得到核/壳比例可控的PCL/PNIPAM纳米微球;交联剂MBA较高的反应活性导致形成了非均匀交联的PNIPAM壳层.  相似文献   

9.
分别以聚乙二醇(PEG)、聚(丙交酯-乙交酯)(PLGA)和牛血清白蛋白(BSA)为冠、壳和核层材料,采用三层同轴电喷技术制备得到微米颗粒.激光共聚焦显微镜(LSCM)显示,该方法制备得到的微米颗粒呈现核-壳-冠结构.通过脱去该微米颗粒的PEG冠层(模板),得到包载有BSA的纳米颗粒.研究发现,随着壳层PLGA溶液进样速度的减慢,去模板后纳米颗粒的粒径从约146 nm减小到68 nm.BSA在纳米颗粒中的包埋率可高达78.3%,并且其释放没有显著的药物暴释现象.圆二色谱结果表明,同轴电喷过程对BSA二级结构影响很小.因此,利用三层同轴电喷-去模板法可制备得到粒径可调控的蛋白质纳米载体系统,并且该过程中蛋白质的结构基本维持不变.  相似文献   

10.
以聚苯乙烯微球为种球,大黄酸为模板分子,采用单步溶胀聚合法在N,N-二甲基甲酰胺体系中制备了单分散分子印迹聚合物微球.用扫描电镜对微球的结构和形貌进行了表征,并研究了微球的制备条件和吸附特性.微球的凹槽可有效地增加微球的比表面积和结合位点,从而提高了模板分子的结合速率及微球的印迹容量.  相似文献   

11.
In this paper, microspheres were prepared by oil-in-water (o/w) emulsion solvent evaporation method. Biodegradable polymer such as blend of poly (lactic acid) (PLA) and poly(?-caprolactone) (PCL) with certain compositions and characteristics was used to prepare the microspheres with poly(vinyl alcohol) (PVA) as an emulsifier. This study observed the microspheres particle’s size distribution at various concentrations of PVA (1%, 1.5%, 2%, and 2.5% PVA). The PVA volume variations effects during the process (50, 100, 150, 200, and 250 mL) were also observed. The blend of PLA and PCL is formed only by physical interaction between them. This can be seen from the FTIR spectrum which shows both PLA and PCL component. The microspheres physical size and appearance were observed by optical microscope (MO). The overall results of this study showed that the formula which used 50–150 mL of 2.5% polyvinyl alcohol produced the microspheres with the most uniform size distribution.  相似文献   

12.
The main objective of this work was to develop a system consisting of polymeric microspheres loaded with steroid drugs. The drugs were encapsulated using biodegradable poly(lactide-co-glycolide) (PLG) and poly(epsilon-caprolactone) (PCL) by double emulsion solvent evaporation method. The lipophilic drugs, levonorgestrel and ethinylestradiol were made soluble by adding ethanol/water mixture. The effects of parameters like polymer concentration and stabilizer concentration were studied on the size, size distribution, surface properties and loading efficiencies of microspheres. The formulated microspheres were smooth, spherical and uniform in shape and size. Fourier transformed infrared spectroscopy and differential scanning calorimetry studies seemed to confirm the absence of chemical interaction between the drugs and the polymers, while the drugs were dispersed in the polymer. The increase in polymer concentrations increased the size as well as the loading efficiency of microspheres. Data obtained in this study demonstrated that the PLG/PCL microspheres may be a suitable polymeric carrier for long acting injectable drug delivery.  相似文献   

13.
采用具有不同共聚物组成和端基官能团的聚己内酯-b-聚乙二醇共聚物(PCL-b-PEG),通过双乳液溶剂挥发法制备了一系列具有不同表面性质的生物降解高分子微球.采用生物模拟矿化的方法以磷灰石修饰微球表面.进一步通过扫描电镜、热重分析仪、X-射线衍射仪和光电子能谱仪对微球表面磷灰石的形貌、含量、结构和组成进行了分析.研究了微球表面亲水性、粗糙度、官能团以及矿化时间对于磷灰石形成的影响.最终实验结果表明,随着共聚物中PEG含量增加,微球表面粗糙度和亲水性增加,因此微球表面磷灰石含量增加.同时微球表面官能团以及矿化时间的不同也会对磷灰石的形成和分布产生明显影响.  相似文献   

14.
Microspheres of amphiphilic multi-block poly(ester-ether)s (PEE)s and poly(ester-ether-amide)s (PEEA)s based on poly(epsilon-caprolactone) (PCL) were investigated as delivery systems for proteins. The interest was mainly focused on the effect of their molecular structure and composition on the overall properties of the microspheres, encapsulating bovine serum albumin (BSA) as a model protein. PEEs and PEEAs were prepared using a alpha,omega-dihydroxy-terminated PCL macromer (Mn= 2.0 kDa) as a hydrophobic component. Hydrophilic oxyethylene sequences were generated using poly(ethylene oxide)s (PEO)s of different molecular mass (Mn= 300-600 Da) in the case of PEEs, or 4,7,10-trioxa-1,13-tridecanediamine (Trioxy) and PEO150 (Mn= 150 Da) in the case of PEEAs. The copolymers showed a decrease of Tm and crystallinity values as compared with PCL. Within each class of copolymers, the bulk hydrophilicity increased with increasing the number of oxyethylene groups in the chain repeat unit. PEEAs were more hydrophilic than PEEs with a similar number of oxyethylene groups. Discrete spherical particles were prepared by both PEEs and PEEAs and their BSA encapsulation efficiency related to copolymer properties. Interestingly, the insertion of short hydrophilic segments is enough to significantly affect protein distribution inside microspheres and its release profiles, as compared to PCL microspheres. Different degradation rates and mechanisms were observed for copolymer microspheres, mainly depending on the distribution of oxyethylene units along the chain. The results highlight that a fine control over the structural parameters of amphiphilic PCL-based multi-block copolymers is a key factor for their application in the field of protein delivery.  相似文献   

15.
The various morphology and structure microspheres were fabricated via one‐step single‐solvent electrospraying of hydrophilic and hydrophobic block modified copolymer of polycaprolactone (PCL). A honeycomb‐like hierarchical structure microspheres of PCL‐b‐PTFOA(4h) and abundant nanometer pores of PCL‐b‐PEG400 microspheres were obtained due to the solvent evaporation, thermally and polymer diffusion‐induced phase separation effect. Furthermore, a superhydrophobic coatings and robust superhydrophobic‐coated cotton woven fabric surfaces were prepared by using PCL‐b‐PTFOA(4h) microspheres with hierarchical structure and low surface energy. The contact angle (CA) and sliding angle (SA) of PCL‐b‐PTFOA(4h) microspheres‐coated cotton woven fabric surfaces reached 164.4 ± 5.5° and 6.8 ± 0.5°, respectively, which allows for self‐cleaning. The self‐cleaning test demonstrated that the coated superhydrophobic surface could shed aqueous dyes and dust without any trace. The superhydrophobic‐coated fabric shows good soaping fastness against mechanical abrasion without significant reduction of CA. This electrospraying coating of block copolymers can provide a simple, facile, and promising technique for producing multifunctional textiles.  相似文献   

16.
Theophylline was encapsulated in polyurethane prepared with hexamethylene diisocyanate (HMDI), polycaprolactone (PCL) (MW = 530 and 2000 g/mol) diols, and starch as polyols and butanediol as chain extender. Polyurethane microspheres were prepared in two reactors; after polyurethane preparation by mixing PCL/starch, HMDI and theophylline in the first reactor, microspheres formation was achieved by transferring the reaction mixture to an aqueous medium (moving at 5000 rpm) of the second reactor. Fourier transform infrared (FTIR) was employed to confirm polyurethane formation during the course of reactions. FTIR spectrum revealed bands at 1729–1733 cm?1 and 3340–3347 cm?1 which indicates carbonyl and NH of amine groups, respectively. Scanning electron microscopy (SEM) was used to study the morphology of the samples. SEM confirmed the formation of microspheres with spherical morphology. Particle size investigation with optical microscopy revealed a size distribution of 8–70 µm. Controlled release of theophylline from the microspheres was performed in phosphate buffered saline (PBS) at pH = 7.4 and monitored with a ultraviolet (UV) spectrometer at 274 nm. Drug release profiles showed that starch addition reduced the release rate around 24% for microspheres prepared from PCL with a molecular weight of 2000 g/mol and it had negligible effect on a molecular weight of 530 g/mol. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels‐Alder (HDA) chemistry has been utilized to successfully generate functional core‐shell microspheres. Initially, precipitation polymerization in conjunction with the RAFT technique has been employed to synthesize divinylbenzene (DVB) microspheres with surface expressed RAFT groups. Subsequently, HDA cycloaddition has been performed under mild reaction conditions (50 °C, 24 h) with a diene‐functionalized poly(ε‐caprolactone) (PCL). While the successful grafting is immediately evident by optical inspection of the microspheres (color change from purple to white), X‐ray photoelectron spectroscopy (XPS), and attenuated total reflectance spectroscopy (ATR) were additionally employed to characterize the chemical composition and surface functionalization of the microspheres. Further, confocal microscopy was used to confirm the presence of grafted PCL chains after labeling them with rhodamine B.

  相似文献   


18.
A novel tri‐component copolymer, polycaprolactone/poly(ethylene oxide)/polylactide (PCEL) was synthesized. The effect of the chemical composition on physical properties was investigated by using NMR, differential scanning calorimetry (DSC) and X‐ray diffraction. Both the soft segment poly(ethylene oxide) (PEO) and polycaprolactone (PCL) could enhance the mobility of polymer chains and decrease the crystallizability of the copolymers. The polymeric microspheres, which are of interest for drug delivery systems, were prepared using an emulsification‐solvent evaporation technique. By scanning electron microscopy (SEM) and atomic force microscopy (AFM), the surface morphology of the microspheres was studied. It was found that the presence of PEO segment could improve the hydrophilicity of the copolymers and the morphology of the polymeric microspheres could be altered by adjusting the chemical composition. The accumulation of PEO segments on the outer surface of the polymeric microspheres was proven by X‐ray photoelectron spectroscopy (XPS). It had also been proven that the PCL segment could facilitate the movement of PEO segment to the outer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Superhydrophobic polycaprolactone (PCL) membranes with hierarchical structure were fabricated via alternate electrospinning/electrospraying techniques. Electrospun PCL/methyl silicone oil (PCL/MSO) nanofibers were employed as substrate. PCL/MSO‐PCL microspheres (PCL/MSO‐PCLMS) hierarchical membrane was prepared via electrosprayed PCLMS as an additional layer on the substrate. Field emission scanning electron microscopy images showed the formation of hierarchical PCL/MSO‐PCLMS membranes. Compared to pure PCL fibers substrate (120 ± 1.3°), the water contact angle (WCA) of MSO‐modified PCL membrane was 142 ± 0.7°. The most interesting observation was that the WCA of PCLMS without any modification could be achieved to 146 ± 2.8°. On this basis, PCL/MSO‐PCLMS hierarchical membrane possessed superhydrophobic surface with 150 ± 0.6° of WCA. The excellent surface roughness and air‐pocket capacity of hierarchical membranes would make the membranes more hydrophobic. The maximum oil (n‐hexane) adsorption capacity of PCL/MSO‐PCLMS membrane was 32.53 g g?1. Oil–water separation efficiencies of the superhydrophobic membranes were all higher than 99.93% after 10 cycles. The hierarchically structured PCL superhydrophobic membranes indicate the potential applications of environmentally friendly biopolymers as separation membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 421–430  相似文献   

20.
A bioinspired adhesive material, polydopamine (pDA), was employed as an interfacial glue to stably immobilize human neural stem cells (hNSCs) on the external surface of biodegradable polycaprolactone (PCL) microspheres, thereby serving as versatile key systems that can be used for cell carriers. The pDA decoration on the PCL microspheres has been resulted in robust hNSC immobilization as well as proliferation on their curved surfaces. The pDA coating has transformed the hydrophobic PCL systems toward water‐friendly and sticky characteristics, thereby resulting in full dispersion in aqueous solution and stable adherence onto a wet biological surface. Adeno‐associated virus, a safe gene vector capable of effectively regulating cell behaviors, can be decorated on the PCL surfaces and delivered efficiently to hNSCs adhered to the microsphere exteriors. These distinctive multiple benefits of the sticky pDA microspheres can provide core technologies that can boost the therapeutic effects of cell therapy approaches.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号