首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic bis- and trismelamine derivatives were prepared from cyanuric chloride by stepwise substitutions with appropriate amines. The complexation abilities of these melamine derivatives with barbituric acid derivatives were evaluated by UV-vis spectroscopy and (1)H NMR. The structure was also confirmed by X-ray crystallography. Both the acyclic and the cyclic bismelamine derivatives formed a 1 : 1 complex via six hydrogen bonds with barbituric acid derivatives. van't Hoff analyses on the complexation of the bismelamines with the barbituric acid derivative revealed that the complexation of the cyclic bismelamine was entropically favored and enthalpically less favored process than those of the acyclic bismelamine. X-Ray crystallographic analysis and (1)H NMR studies revealed that the cyclic trismelamine bound one barbituric acid derivative into the cavity via six hydrogen bonds by two melamine moieties and another barbituric acid via three hydrogen bonds by the residual melamine moiety.  相似文献   

2.
A bolaform Schiff base, N,N'-bis(salicylidene)-1,10-decanediamine (BSC10), has been synthesized and its interfacial hydrogen bond formation or molecular recognition with barbituric acid was investigated in comparison with that of a single chain Schiff base, 2-hydroxybenzaldehyde-octadecylamine (HBOA). It has been found that while HBOA formed a monolayer at the air/water interface, the bolaform Schiff base formed a multilayer film with ordered layer structure on water surface. When the Schiff bases were spread on the subphase containing barbituric acid, both of the Schiff bases could form hydrogen bonds with barbituric acid in situ in the spreading films. As a result, an increase of the molecular areas in the isotherms was observed. The in situ H-bonded films could be transferred onto solid substrates, and the transferred multilayer films were characterized by various methods such as UV-vis and FT-IR spectrosopies. Spectral changes were observed for the films deposited from the barbituric acid subphase, which supported the hydrogen bond formation between the Schiff bases and barbituric acid. By measuring the MS-TOF of the deposited films dissolved in CHCl3 solution, it was concluded that a 2:1 complex of HBOA with barbituric acid and a 1:2 complex of BSC10 with barbituric acid were formed. On the other hand, when the multilayer films of both Schiff bases were immersed in an aqueous solution of barbituric acid, a similar molecular recognition through the hydrogen bond occurred. A clear conformational change of the alkyl spacer in the bolaform Schiff base was observed during the complex formation with the barbituric acid.  相似文献   

3.
IntroductionThe basis of molecular recognition is the expression of information stored in the interact-ing components. In the process of self-assembly, the information is expressed by acomponent's potential for entering into noncovalent relationships with its partners and by itssteric requirements. Thus, it could be expected that suitably designed molecular components...containing proper information would generate self-assemblies with definite architect.re.[1'2J.There have been many examples …  相似文献   

4.
5.
Alternating Langmuir-Blodgett films were successfully deposited with two complementary molecular components: a liglu-active barbituric acid derivative (B) and a melamine derivative (M). X-ray diffraction measurements show that the alternating films have a layered structure of HMBM…BM. The effect of the interlayer molecular recognition between B and M in the alternating films was observed via atomic force microscopic measurements.  相似文献   

6.
Complex monolayers of barbituric acid and melamine were formed by spreading a chloroform solution of amphiphilic barbituric acid on the subphase of melamine solution. It was confirmed that the complex monolayer was formed through in situ complementary hydrogen bonding at the air-water interface. It was interesting to find that the complex LB films showed supramolecular chirality although both of the molecules were achiral, as verified by the circular dichroism spectral measurements. It was suggested that the pi-pi stacking of the neighboring barbituric acid and melamine group in a helical sense resulted in the chirality of the molecular assemblies. Due to the directionality of the hydrogen bonding, the BA-M film could form regular aligned nanofibers on the AFM images. Increasing the subphase temperature will lead to the decrease of CD intensity and the change of the morphologies. We suggested that the strength of the hydrogen bonding resulted in the difference.  相似文献   

7.
Recent progress in studies of the main characteristics of supramolecular assemblies formed by interfacial molecular recognition between an amphiphilic monolayer and a non-surface-active species, which is dissolved in the aqueous subphase, by complementary hydrogen bonding and/or electrostatic interaction at the air-water interface is reviewed. Systems consisting of an amphiphilic melamine-type monolayer and an pyrimidine derivative dissolved in the aqueous subphase are representative model systems for molecular recognition on the basis of complementary hydrogen bonding. Most of the studies have been performed with 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers as host component and thymine, uracil or barbituric acid as dissolved non-surface-active pyrimidine derivatives. The combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements is optimal for the characterization of the change in structure and phase behavior at the interfacial recognition process. The molecular recognition of all pyrimidine derivatives dissolved in the aqueous subphase changes drastically and in a specific way the characteristic features (pi-A isotherms, morphology of the condensed phase domains) of the 2C11H23-melamine monolayer. The small condensed phase domains of the pure 2C11H23-melamine monolayer are compact without an inner texture. The monolayers of the supramolecular 2C11H23-melamine entities with thymine or uracil form specifically well-shaped condensed phase domains with an inner alkyl chain texture essentially oriented parallel to the periphery. The completely different morphology of the 2C11H23-melamine-barbituric acid monolayers is characterized by the formation of large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. The striking differences in the main characteristics between the supramolecular entities are related to their different chemical structures: complementary hydrogen bonding of two thymine or uracil molecules by one 2C11H23-melamine molecule and a linearly extended hydrogen bonding network between 2C11H23-melamine and barbituric acid. The high values of hydrogen bonding energy obtained by quantum chemical calculations on the basis of the semi-empirical PM3 method state the high stability of the supramolecular entities. The GIXD results reveal that the formation of hydrogen-bond based superstructures between the polar head groups of the amphiphilic 2C11H23-melamine monolayer and the non-surface-active pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure of the alkyl chains. The alternative possibility to construct interfacial molecular recognition systems on the basis of acid-base interaction is demonstrated by the experimental results obtained by molecular recognition of the heptadecyl-benzamidinium chloride monolayers with dissolved non-surface-active phenylacetate ions. The formation of supramolecular assemblies causes also drastical changes of the surface features in these systems. Here, the development of a substructure in the condensed phase domains consisting of long filigree strings and the favoured formation of bilayers overgrowing the strings indicates a linearly extended amidinium-carboxylate interfacial structure of the base and acid component in alternating sequence.  相似文献   

8.
Progress in the understanding of interfacial molecular recognition kinetics is obtained by use of the sweeping technique for experimental studies of the reaction kinetics between a host monolayer and a non-surface-active species dissolved in the aqueous subphase. The experimental results show that the interfacial recognition reaction between a 2C(11)H(23)-melamine (2,4-di(n-undecylamino)-6-amino-1,3,5-triazine) monolayer and dissolved barbituric acid is reversible when the 2C(11)H(23)-melamine/barbituric acid monolayer is transferred back onto a pure water subphase. The kinetics of the recognition and dissociation reaction is experimentally and theoretically investigated. The approximate additive theoretical model developed recently is extended to consider the dissociation kinetics of the interfacial supramolecular complex. The kinetic constants for the recognition and dissociation reactions in the mixed monolayer consisting of 2C(11)H(23)-melamine and 2C(11)H(23)-melamine/barbituric acid complex are determined. It is shown that the kinetic constant of the recognition reaction is nearly independent of temperature, whereas that of the dissociation reaction increases with increasing temperature.  相似文献   

9.
Self-assembly and molecular recognition of the monolayers composed of an equimolar mixture of adenine- and thymine-functionalized nucleolipids at the air-water interface have been investigated in detail using surface pressure-molecular area isotherms and in situ infrared reflection absorption spectroscopy (IRRAS). Prior to molecular recognition, the adenine moieties in the monolayer were almost oriented on an end-on mode through π-stacking and hydrogen bonding interactions, and the C-C-C planes of the alkyl chains were preferentially oriented perpendicular to the water surface, while the thymine moieties in the monolayer were involved in hydrogen bonding almost with a flat-on orientation. On aqueous subphases containing complementary bases, no significant molecular recognition was observed for the monolayers of individual nucleolipids. In the monolayer of equimolar mixture, molecular recognition occurred between the adenine and thymine moieties through hydrogen bonding probably with the development of cyclic structures of adenine-thymine-adenine-thymine quartets. Although molecular recognition between the monolayer of thymine-functionalized nucleolipids and aqueous melamine took place through triple hydrogen bonds, no melamine binding to the monolayer of equimolar mixture was observed, which reflects the formation of the quartets in the mixed monolayers at the air-water interface. FTIR and small-angle X-ray diffraction (XRD) results of the corresponding Langmuir-Blodgett films support the hydrogen bonding recognition and molecular orientation.  相似文献   

10.
The main characteristics of Langmuir monolayers are radically changed by molecular recognition of hydrogen bond nonsurface-active species. The change in the thermodynamic, phase, and structural features by molecular recognition of dissolved uracil or barbituric acid by 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers is characterized by combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements. Phase behavior of the 2C11H23-melamine monolayer and morphology of the condensed phase domains are changed drastically, but in a specific way, by molecular recognition of uracil or barbituric acid. The main characteristics of the interfacial system can be essentially affected by the kinetics of the recognition process. Pure 2C11H23-melamine monolayers show only small compact, but nontextured domains. The monolayers of 2C11H23-melamine-uracil assemblies develop well-shaped circular condensed-phase domains having an inner texture with alkyl chains essentially oriented parallel to the periphery and having a striking tendency to two-dimensional (2D) Ostwald ripening. The 2C11H23-melamine-barbituric acid monolayers form large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. BAM imaging of corresponding assemblies with ((CH3(CH2)11O(CH2)3)2-melamine having modified alkyl chains demonstrates the specific effect of the monolayer component. GIXD results reveal that molecular recognition of pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure. The striking differences in the main characteristics between the supramolecular species are related to their different chemical structures. Quantum chemical calculations using the semiempirical PM3 method provide information about the different nature of the hydrogen-bonding-based supramolecular structures.  相似文献   

11.
A straightforward synthesis of a fullerene derivative appended with a barbituric acid molecular recognition motif is described. The presence of two nonself-complementary hydrogen-bonding sites is shown to be conducive to the construction of supramolecular assemblies. In the presence of a melamine derivative possessing complementary hydrogen-bonding sites, enhanced efficiency toward photodimerization of the fullerene moiety is observed. This represents the first example of intermolecular photodimerization of a fullerene derivative in homogeneous solution, made possible by the formation of supramolecular assemblies in which the fullerenes are maintained in close proximity.  相似文献   

12.
Monolayers of amphiphilic melamine derivatives are good candidates for the formation of supramolecular structures by hydrogen-bonding of nonsurface active species dissolved in the aqueous subphase by molecular recognition. In the present work, the thermodynamic and structural properties of the Langmuir monolayers of a homologous series of a selected amphiphilic melamine-type are characterized. Good candidates for such studies are the decyl, undecyl, and dodecyl homologues of the 2,4-di(n-alkylamino)-6-amino-1,3,5-triazine (2CnH(2n+1)-melamine) monolayers because of their two-phase coexistence region in the accessible temperature range. The characterization of the structural and phase behavior is performed by a combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements. A comprehensive thermodynamic analysis provides good agreement between the experimental surface pressure - area (Pi-A) isotherms and the theoretical curves that were calculated on the basis of equations of state for a large region of monolayer stages developed by us in J. Phys. Chem. 1999, 103, 145. Theoretical curves calculated by application of equations of state only for the fluid monolayer state proposed recently by Rusanov (J. Chem Phys. 2004, 120, 10736) are in good agreement with the experiments in a limited temperature range. A rigorous equation is derived and applied to the experimental results for the calculation of the enthalpy of two-dimensional phase transition. The combination of BAM and GIXD illustrates that the microscopic long range ordering of the condensed monolayer phases is related to the lattice structure of the condensed monolayer.  相似文献   

13.
Summary: The barbituric acid moiety of the presented dyes shows multifunctional properties like acidochromism, solvatochromism, and adjustable hydrogen-bonding pattern for molecular recognition. Hydrogen-bonding ability, acidity and solvatochromic effects are studied for a series of N-alkyl substituted 5-(4-nitrophenyl)-barbiturates. Solvatochromism and metal ion complexation are also investigated using chromophoric thiobarbituric acid derivatives.  相似文献   

14.
5-Arylidenes 1a and 1b, on reaction with ethyl cyanoacetate and diethyl malonate in the presence of ammonium acetate under Michael condensation, yield pyridine derivatives 2 and 3, respectively. Cyclopentapyrimidine derivative 4 can also be obtained by the reaction of 1a with malononitrile in the presence of piperidine. The reaction of 5-arylidene lb with monochloroacetic acid in an alkaline medium gives the thiazol derivative 5. Also, spiro-[3′, 5′]cyclohexenyl pyrimidine derivative 6 could be obtained from the reaction of 1d with maleic anhydride. On the other hand, 5-arylidene 1e reacts with maleic anhydride to give 2-thiobarbituric acid derivative 7. The condensation reaction of 2-thiovioluric acid 8 with some hydrazines affords the triazole derivatives 9a-d. Finally, barbituric acid condenses with isatin to give 5-arylidene 1f, which can be cyclized with phosphorous pentoxide to afford 10.  相似文献   

15.
AMI semi-empirical method was used to optimize the barbituric acid derivatives substituted with glucosyl B1-5 (series B), and the thiobarbituric acid derivatives substituted with glucosyl T1-5 (series T). Based on the optimized structures, INDO/CI method was adopted to calculate the electronic spectra. Meanwhile, the second-order nonlinear optical (NLO) coefficients βμ were calculated with the sum-over-state (SOS) formula. The results show that when the number of glucosyl units was increased, |βμ| values of the barbituric and thiobarbituric acid derivatives were both enhanced, especially for thiobarbituric acid derivatives. It indicates that non-conjugated substituted group could also improve NLO properties of materials when the number of repeated units was increased. Additionally, the absorption bands appearing in UV area are consistent with the proper change of the number of glucosyl units, and consequently it can be concluded that the high transparencies of all systems were scarcely varied.  相似文献   

16.
17.
The reaction of barbituric, N-alkylbarbituric acids, and their 2-thio analogs with carboxybenzaldehyde and 2-carboxy-3,4-dimethoxybenzaldehyde leads to the formation of the corresponding 5-(3'-oxo-1',3'-dihydroisobenzofuran-1'-yl)barbituric and 2-thiobarbituric acids, the structures of which were studied by 1H and 13C NMR spectroscopy and mass spectrometry. In DMSO the derivatives of barbituric acid exist in the form of mixtures of the ketone and enol tautomers, while their 2-thio analogs exist in the enol form. In chloroform the tautomeric equilibrium is displaced fully toward the ketone form.  相似文献   

18.
This paper reports the formation of novel hydrogen-bonded assemblies 1(3).CA obtained upon mixing cyanuric acid (CA) with melamine derivatives 1, in which two of the three possible H-bonding arrays have been blocked. The four components are held together by 9 hydrogen bonds and form a rigid planar structure in which a central CA (three ADA motifs: A = acceptor, D = donor) is hydrogen bonded to three peripheral melamine derivatives (DAD motif). Furthermore, the synthesis and assembly studies are described of hydrogen-bonded assemblies 2-4.CA, comprised of three melamine derivatives that are covalently connected, and CA. The overall thermodynamic stability of assemblies 2-4.CA is superior to 1(3).CA (I(Tm) = 9 vs 3.6). The presence of the 2.CA complex in chloroform was confirmed by (1)H NMR spectroscopy and MALDI-TOF mass spectrometry. Substitution of the trimelamines with chiral or fluorescent groups (R(3)) enabled the study of the assemblies by CD and fluorescence spectroscopy. Titration experiments revealed strongly enhanced stabilities even in the presence of polar solvents, such as THF and CH(3)OH. Depending on the polarity of the solvent, stacking between the planar assembly units was observed.  相似文献   

19.
This paper reports the value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K for barbituric acid. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and transference (transpiration) method in a saturated N2 stream and a gas-phase enthalpy of formation value of -(534.3 +/- 1.7) kJ x mol(-1) was determined at T = 298.15 K. G3-calculated enthalpies of formation are in very good agreement with the experimental value. The behavior of the sample as a function of the temperature was studied by differential scanning calorimetry, and a new polymorph of barbituric acid at high temperature was found. In the solid state, two anhydrous forms are known displaying two out of the six hydrogen-bonding patterns observed in the alkyl/alkenyl derivatives retrieved from the Cambridge Crystallographic Database. The stability of these motifs has been analyzed by theoretical calculations. X-ray powder diffraction technique was used to establish to which polymorphic form corresponds to the commercial sample used in this study and to characterize the new form at high temperature.  相似文献   

20.
A novel perylenetetracarboxylic diimide molecule (2PDI-TAZ), which contains two perylenetetracarboxylic diimide (PDI) attached to a melamine headgroup, was designed and synthesized. Supramolecular self-assemblies were studied in Langmuir and Langmuir–Blodgett films. Surface pressure–area isotherm measurements and the spectroscopic studies indicate that the 2PDI-TAZ molecules adopted a face-to-face configuration and edge-on orientation in Langmuir or the multilayer LB films. The presence of the barbituric acid in subphase change the hydrophilicity of 2PDI-TAZ due to the hydrogen bonding between melamine and barbituric acid, which has been revealed by the πA isotherms and the FT-IR spectra. Transmission electron microscopy images of the LB films deposited from the barbituric acid solution revealed uniform nanowire morphology while the X-ray diffraction studies indicate that the molecules in the solid film packed with high order. The strong excimer emission of 2PDI-TAZ in LB films suggests enforced face-to-face configuration for the PDI unites in LB films in relative to that in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号