首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   4篇
化学   110篇
晶体学   4篇
力学   2篇
数学   6篇
物理学   32篇
  2022年   3篇
  2021年   8篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   8篇
  2011年   18篇
  2010年   17篇
  2009年   8篇
  2008年   16篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1996年   6篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1990年   3篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有154条查询结果,搜索用时 62 毫秒
1.
Sergey P. Verevkin   《Thermochimica Acta》1998,310(1-2):229-235
The standard enthalpies of formation ΔfHo (liq. or cr.) at the temperature T = 298.15 K were measured using combustion calorimetry for benzophenone (A), 1-indanone (B), -tetralone (C), 9-fluorenone (D), anthrone (E) and dibenzosuberone (F). The standard enthalpies of vaporization ΔvHo or sublimation ΔsHo of A-F and 5,7-dihydro-6H-dibenzo[a,c]cyclohepten-6-one (G) were obtained from the temperature function of the vapor pressure measured in a flow system. Enthalpies of fusion ΔmH of solid compounds were measured by DSC. From the enthalpies of formation of the gaseous compounds of A-G the values of their strain enthalpies were derived and structural effects discussed.

  相似文献   

2.
The thermolysis reactions of the tricyanomethyl compounds 10a-c were studied in solution. 2,2-Dicyano-3-methyl-3-phenylbutyronitrile ( 10a ) and 2,2-dicyano-3-methyl-3-(4-nitrophenyl)butyronitrile ( 10b ) decomposed heterolytically into carbenium ions and (CN)3C anions, while 9-methyl-9-(tricyanomethyl)fluorene ( 10c ) underwent about 11% homolytic C-C bond cleavage into 9-methyl-9-fluorenyl- and tricyanomethyl radicals. The rates of the homolysis were determined by a radical scavenger procedure under conditions of pseudozero order kinetics. From the temperature effect on the rate constants the activation parameters were determined [ΔH ( 10c ) = 155· 2 kJ mol−1, ΔS ( 10c ) = 58· 5 J mol−1 K−1]. Standard enthalpies of formation ΔH (g) were determined for 2,2-dicyanopropionitrile ( 2 ) (422.45 kJ mol−1), 2,2-dicyanohexanenitrile ( 3 ) (349.74 kJ mol−1), 2,2-dicyano-3-phenylpropionitrile ( 4 ) (540.75 kJ mol−1), 2-butyl-2-methylhexanentrile ( 5 ) (-133.20 kJ mol−1), 2,2-dimethylpentanenitrile ( 6 ) (-45.78 kJ mol−1), and 2-methylbutyronitrile ( 7 ) (2.44 kJ mol−1) from the enthalpies of combustion and enthalpies of sublimation/vaporization. From these data and known Δ (g) values for alkanenitriles and -dinitriles, thermochemical increments for ΔH (g) were derived for alkyl groups with one, two, or three cyano groups attached. The comparison of these increments with those of alkanes reveals a strong geminal destabilization, which is interpreted by dipolar repulsions between the cyano groups. - From ΔH (g) of 10c and ΔH of its homolytic decomposition the radical stabilization enthalpy for the tricyanomethyl radical 1 RSE ( 1 ) = -18 kJ mol−1 was determined. Thus, 1 is destabilized, in comparison with the RSEs of tertiary α-cyanalkyl (23 kJ mol−1) and α,α-dicyanoalkyl (27 kJ mol−1) radicals, which were recalculated from bond homolysis measurements[4] and the new thermochemical data. This change of RSE on increasing the number of α-cyano groups is discussed as the result of the additive contributions by resonance stabilization and increasing destabilization by dipolar repulsion. The amount of the dipolar energies was estimated by molecular mechanics (MM2).  相似文献   
3.
The standard enthalpies of combustion c H o of aliphatic diacetates1 and aromatic diacetates2 were measured calorimetrically. The enthalpies of vaporization vap H o or sublimation sub H o of1 and2 were obtained from the temperature function of the vapor pressure measured in a flow system. From f H o(g) of1 and2 new values of group increments for the estimation of standard enthalpies of formation of these classes of compounds were derived. The geminal interaction energy between the geminal acyloxy groups shows no anomeric stabilization.Geminal Substituent Effects, Part 12, for part 11 see Ref. 7.  相似文献   
4.
5.
6.
The enthalpies of formation [Delta(g)] of tricyclo[8.2.2.2(4,7)]hexadeca-1(13),2,4(16),5,7(15),10(14),11-heptaene (2, 1,2-dehydro[2.2]paracyclophane or [2.2]paracyclophane-1-ene) and tricyclo[8.2.2.2(4,7)]hexadeca-1(13),2,4(16),5,7(15),8,10(14),11-octaene (3, 1,2,9,10-dehydro[2.2]paracyclophane or [2.2]paracyclophane-1,9-diene) have been determined by measuring their heats of combustion in a microcalorimeter and their heats of sublimation by the transpiration method. Values of the strain energies (SE) [SE(2) = 34.7 kcal mol(-)(1), SE(3) = 42.0 kcal mol(-)(1)] have been derived from the gas-phase heats of formation and are compared with those from MM3 and PM3 calculations and with the corresponding value SE(1) = 30.1 kcal mol(-)(1) for the parent tricyclo[8.2.2.2(4,7)]hexadeca-1(13),4(16),5,7(15),10(14),11-hexaene (1, [2.2]paracyclophane). The higher strain energies of 2 and 3 (by 4.6 and 11.9 kcal mol(-)(1)) are in accord with the well-known increased reactivities of their aromatic rings as a consequence of their increased bending. As revealed by an X-ray crystal structure analysis, the bending in the monoene 2 corresponds to that of 1 and 3 at one of two bridging corners.  相似文献   
7.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   
8.
9.
Russian Journal of Applied Chemistry - Pt/Sup catalysts with SiO2, MCM-48, and Al2O3 supports (Sup) were prepared. The catalysts were studied by methods of low-temperature nitrogen adsorption,...  相似文献   
10.
Precursor solubility is a crucial factor in industrial applications, dominating the outcome of reactions and purification steps. The outcome and success of thermodynamic modelling of this industrially important property with equations of states, such as Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), vastly depends on the quality of the pure-component parameters. The pure-component parameters for low-volatile compounds such as ionic liquids (ILs) have been commonly estimated using mixture properties, e. g. the osmotic pressure of aqueous solutions. This leads to parameters that depend on the solvent, and transferability to other mixtures often causes poor modeling results. Mixture-independent experimental properties would be a more suitable basis for the parameter estimation offering a way to universal parameter sets. Model parameters for ILs are available in the literature [10.1016/j.fluid.2012.05.029], but they were estimated using pure-IL density data. The present work focuses on a step towards a more universal estimation strategy that includes new experimental vapor-pressure data of the pure IL. ILs exhibit an almost negligible vapor pressure in magnitude of usually 10−5 Pa even at elevated temperatures. In this work, such vapor-pressure data of a series of 1-ethyl-3-methyl-imidazolium-based [C2mim]-ILs with various IL-anions (e. g. tetrafluoroborate [BF4], hexafluorophosphate [PF6], bis(trifluoromethylsulfonyl)imide [NTf2]) were experimentally determined and subsequently used for PC-SAFT parameter estimation. The so-determined parameters were used to predict experimental molecular precursor solubility in ILs and infinitely diluted activity coefficients of various solvents in ILs. The parameters were further compared to modeling results using classical parametrization methods (use of liquid-density data only for the molecular PC-SAFT and the ion-based electrolyte PC-SAFT). As a result, the modeled precursor solubilities using the new approach are much more precise than using the classical parametrization methods, and required binary parameters were found to be much smaller (if needed). In sum, including the pure-component vapor-pressure data of ILs opens the door towards parameter estimation that is not biased by mixture data. This procedure might be suitable also for polymers and for all kind of ionic species but needs extension to ion-specific parametrization in the long term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号