首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Paper I, we studied vibrational properties of normal bases, base derivatives, Watson-Crick base pairs, and multiple layer base pair stacks in the frequency range of 1400-1800 cm(-1). However, typical IR absorption spectra of single- and double-stranded DNA have been measured in D(2)O solution. Consequently, the more relevant bases and base pairs are those with deuterium atoms in replacement with labile amino hydrogen atoms. Thus, we have carried out density functional theory vibrational analyses of properly deuterated bases, base pairs, and stacked base pair systems. In the frequency range of interest, both aromatic ring deformation modes and carbonyl stretching modes appear to be strongly IR active. Basis mode frequencies and vibrational coupling constants are newly determined and used to numerically simulate IR absorption spectra. It turns out that the hydration effects on vibrational spectra are important. The numerically simulated vibrational spectra are directly compared with experiments. Also, the (18)O-isotope exchange effect on the poly(dG):poly(dC) spectrum is quantitatively described. The present calculation results will be used to further simulate two-dimensional IR photon echo spectra of DNA oligomers in the companion Paper III.  相似文献   

2.
NMR studies, UV-monitored melting experiments, and ab initio calculations show that 5-hydroxyuracil, produced by the oxidative de-amination of cytosines by reactive oxygen species, can form stable base-pairs with dA, dG, dC and dT residues in a DNA duplex, providing a basis for the in-vivo incorporation of 5-hydroxyuracil during DNA replication.  相似文献   

3.
A general method for the assignment of DNA fragment proton resonances, especially for the sugar protons, has been presented and used to interpret the 400 MHz proton spectra of dApTpGpT and dApCpApTpGpT in neutral aqueous solution. Only fine splittings of about 3 Hz are observed in the H-2″ resonances, and the total splitting is larger for the H-2′ (≈29 Hz) than for the H-2″ (22–23 Hz) multiplets. The purine and pyrimidine resonances can be distinguished on the basis of the H-2″ and H-2″ chemical shifts. The resonances of the H-2′ and H-2″ protons (above and below the sugar plane, respectively) of dA and dG exhibit chemical shifts of 2.65—2.80 ppm, while those of dC and dT residues are located at higher fields between 1.95 and 2.40 ppm. At high temperature (≥60°C), δH-2′>YδH-2″ for the purine family, while δH-2′ « δH-2″ in the case of the pyrimidine family. Except for the terminal residue, the H-3′ resonances of dA and dG are located at lower fields compared with those of the dC and dT residues. The same is true for the H-4′ resonances. In general δA1′>δG1′ and in the case of self complementary duplexes the H-1′ and H-2′ chemical shift variations versus temperature are found to be larger for the dC than for the dT residues.  相似文献   

4.
Carrying out density functional theory calculations of four DNA bases, base derivatives, Watson-Crick (WC) base pairs, and multiple-layer base pair stacks, we studied vibrational dynamics of delocalized modes with frequency ranging from 1400 to 1800 cm(-1). These modes have been found to be highly sensitive to structure fluctuation and base pair conformation of DNA. By identifying eight fundamental basis modes, it is shown that the normal modes of base pairs and multilayer base pair stacks can be described by linear combinations of these vibrational basis modes. By using the Hessian matrix reconstruction method, vibrational coupling constants between the basis modes are determined for WC base pairs and multilayer systems and are found to be most strongly affected by the hydrogen bonding interaction between bases. It is also found that the propeller twist and buckle motions do not strongly affect vibrational couplings and basis mode frequencies. Numerically simulated IR spectra of guanine-cytosine and adenine-thymine bases pairs as well as of multilayer base pair stacks are presented and described in terms of coupled basis modes. It turns out that, due to the small interlayer base-base vibrational interactions, the IR absorption spectrum of multilayer base pair system does not strongly depend on the number of base pairs.  相似文献   

5.
We investigated the molecular recognition between the amphiphile AzoAde, which is composed of azobenzene in the hydrophobic and adenine in the hydrophilic portion of the molecule, and oligonucleotides having a homogeneous base (dA30, dT30, dG30, and dC30) at the air-water interface. On the basis of the complementary base-pairing of DNA in the duplex, orderly arrangement of AzoAde on templated dT30 was examined using pi-A isotherm, UV-vis RAS, FT-IR RAS, and XPS measurements. Although there was little interaction between AzoAde and mismatched oligonucleotides (dA30, dG30, and dC30), AzoAde prepared on a dT30 subphase stoichiometrically assembled and interacted with dT30, subsequently forming a J-form assembly at the air-water interface. AFM observation of the LB films revealed the nanostructure of the J-formed AzoAde monolayer on the dT30 subphase as well as the domain structures of the H-formed monolayers on the other oligonucleotide subphases. Therefore, dT30 has a potential application as a template for assembling AzoAde at the air-water interface.  相似文献   

6.
Triplex-forming oligonucleotides (TFOs) containing 9-deazaguanine N7-(2′-deoxyribonucleoside) 1a and halogenated derivatives 1b,c were synthesized employing solid-phase oligonucleotide synthesis. For that purpose, the phosphoramidite building blocks 5a – c and 8a – c were synthesized. Multiple incorporations of 1a – c in place of dC were performed within TFOs, which involved the sequence of five consecutive 1a – c ⋅ dG ⋅ dC triplets as well as of three alternating 1a – c ⋅ dG ⋅ dC and dT ⋅ dA ⋅ dT triplets. These TFOs were designed to bind in a parallel orientation to the target duplex. Triplex forming properties of these oligonucleotides containing 1a – c in the presence of Na+ and Mg2+ were studied by UV/melting-curve analysis and confirmed by circular-dichroism (CD) spectroscopy. The oligonucleotides containing 1a in the place of dC formed stable triplexes at physiological pH in the case of sequence of five consecutive 1a ⋅ dG ⋅ dC triplets as well as three alternating 1a – c ⋅ dG ⋅ dC and dT ⋅ dA ⋅ dT triplets. The replacement of 1a by 9-halogenated derivatives 1b,c further enhanced the stability of DNA triplexes. Nucleosides 1a – c also stabilized duplex DNA.  相似文献   

7.
To elucidate electron attachment induced damage in the DNA double helix, electron attachment to the 2'-deoxyribonucleoside pair dG:dC has been studied with the reliably calibrated B3LYP/DZP++ theoretical approach. The exploration of the potential energy surface of the neutral and anionic dG:dC pairs predicts a positive electron affinity for dG:dC [0.83 eV for adiabatic electron affinity (EAad) and 0.16 eV for vertical electron affinity (VEA)]. The substantial increases in the electron affinity of dG:dC (by 0.50 eV for EAad and 0.23 eV for VEA) compared to those of the dC nucleoside suggest that electron attachment to DNA double helices should be energetically favored with respect to the single strands. Most importantly, electron attachment to the dC moiety in the dG:dC pair is found to be able to trigger the proton transfer in the dG:dC- pair, surprisingly resulting in the lower energy distonic anionic complex d(G-H)-:d(C+H).. The negative charge for the latter system is located on the base of dC in the dG:dC- pair, while it is transferred to d(G-H) in d(G-H)-:d(C+H)., accompanied by the proton transfer from N1(dG) to N3(dC). The low energy barrier (2.4 kcal/mol) for proton transfer from dG to dC- suggests that the distonic d(G-H)-:d(C+H). pair should be one of the important intermediates in the process of electron attachment to DNA double helices. The formation of the neutral nucleoside radical d(C+H). is predicted to be the direct result of electron attachment to the DNA double helices. Since the neutral radical d(C+H). nucleotide is the key element in the formation of this DNA lesion, electron attachment might be one of the important factors that trigger the formation of abasic sites in DNA double helices.  相似文献   

8.
We synthesized two water-soluble porphyrins appending platinum(II) complexes [alpha,beta-(4a) and alpha,alpha-(4b) 5,15-bis(2-trans-[PtCl(NH3)2]N-2-aminoethylaminocarbonylphenyl) 2,3,7,8,12,13,17,18-octamethylporphyrin] and studied their reactions with a variety of nucleic acids [disodium adenosine-5'-monophosphate (AMP), disodium guanosine-5'-monophosphate (GMP), disodium thymidine-5'-monophosphate (TMP), disodium cytidine-5'-monophosphate (CMP), synthetic polymer poly(dG)-poly(dC), poly(dA)-poly(dT)] by 1H-NMR, UV-vis and FAB-MS spectroscopies. Based on the denaturation experiments of synthetic nucleic acid polymers, we conclude that the presence of the porphyrins (5.6 microM) does not cause significant changes in the melting temperature of poly(dA)-poly(dT) (28 microM) (deltaT=1 degrees C) and shows reannealing. On the other hand, gradual melting of poly(dG)-poly(dC) (28 microM) occurs at a low temperature (deltaT= -27 degrees C) in the presence of the porphyrins (5.6 microM), and the solutions do not show reannealing phenomena. The results of UV-vis and 1H-NMR experiments revealed that the porphyrins bind to guanine bases and that the porphyrins bind to GMP more strongly than to the other nucleotides. The binding modes between the porphyrins and synthetic nucleic acids are affected more by the coordination of the nucleobase [poly(dG)-poly(dC)] to the Pt(II) in the porphyrins than by Coulomb and hydrophobic interactions.  相似文献   

9.
采用稳态吸收和荧光光谱、圆二色谱和皮秒时间分辨荧光光谱手段, 研究了5,10,15,20-四[4-(N-甲基吡啶)]卟啉(TMPyP4)与腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)等4种碱基, 以及相应的核苷、核苷酸和单链DNA的结合能力和光谱学性质. 研究结果发现, 嘌呤与TMPyP4的结合能力比嘧啶的强. 对于某一碱基系列, 结合能力强弱顺序依次为: 碱基~核苷<核苷酸<单链DNA. 时间分辨荧光谱研究发现, 除鸟嘌呤外, 核酸和TMPyP4复合物的荧光动力学均含有快(1~2 ns)和慢(约10 ns)两个衰减过程, 它们分别是由激基复合体和环境极性对激发态TMPyP4分子的影响所致. 单链DNA能诱导TMPyP4产生诱导圆二色信号, 而单分子(碱基、核苷、核苷酸)则无此功能.  相似文献   

10.
2'-O-(3-(Furan-2-yl)propyl)adenosine was synthesized and evaluated for interstrand crosslink (ICL) formation in DNA duplexes. In situ oxidation of the furan moiety with NIS showed rapid crosslink formation to dA and dC, while dT and dG were inactive.  相似文献   

11.
The deoxyribonucleosides have been studied to determine the properties of combinations of 2-deoxyribose with each of the isolated DNA bases for both neutral and anionic species. We have used a carefully calibrated theoretical method [Chem. Rev. 2002, 102, 231], employing the B3LYP hybrid Hartree-Fock/DFT functional with the DZP++ basis set. Predictions are made of the geometric parameters, adiabatic electron affinities, charge distributions based on natural population analysis, and decomposition enthalpy for the neutral and anionic forms of the four 2'-deoxyribonucleosides in DNA: 2'-deoxyriboadenosine (dA), 2'-deoxyribocytidine (dC), 2'-deoxyriboguanosine (dG), and 2'-deoxyribothymidine (dT). Geometric changes in the anions show that the glycosidic bond exhibits little change with excess charge for the guanosine but significant shortening for the adenosine and for the pyrimidines. The zero-point corrected adiabatic electron affinities in eV for each of the 2'-deoxyribonucleosides are as follows: 0.06, dA; 0.09, dG; 0.33, dC; and 0.44, dT. These values are uniformly greater than those of the corresponding isolated bases (-0.28, A; -0.07, G; 0.03, C; 0.20, T) and the isolated 2-deoxyribose (-0.38) at the same level of theory. The vertical detachment energies of dT and dC are substantial, 0.72 and 0.94 eV, and these anions should be observable. A high VDE, 0.91 eV, is also found for dA but its anion is unlikely to be stable due to the small AEA of 0.06 eV. The high VDE reflects the fact that the molecular structures of the anions and the corresponding neutral species are quite different. Valence character is displayed for the SOMOs of dA, dC, and dT, while some component of diffuse character is visible in the SOMO of dG. Further analysis of electronic changes upon electron attachment include an examination of the NPA charges, which show that in the neutral 2'-deoxyribonucleosides the sum of NPA charges for every base is the same, -0.28 with the sum of 2-deoxyribose charges being positive, +0.28. In the anions, the trend in charge division varies based on the nature of the excess electron in the anions. Thermodynamically, the overall enthalpy change for the reaction of water with the neutral nucleosides to give bases and ribose is approximately zero. The analogous decomposition is exothermic by 8 to 11 kcal mol-1 for the anions, indicating possible challenges for anionic gas-phase nucleoside exploration in the presence of water.  相似文献   

12.
 We present a computational method which couples normal mode analysis in internal coordinates of a molecule with very far IR spectroscopy. The analytical expression for the dependence of IR absorption on frequency incorporates frequencies and optical activities of each normal mode. In order to predict far-IR spectra of a molecule we evaluate the optical activity of each normal mode. This optical activity is determined by the vibration amplitude of the dipole moment produced by a normal mode. We calculated normal modes of DNA double-helical fragments (dA)12 · (dT)12 and (dA-dT)6 · (dA-dT)6 and evaluated their optical activities. These were found to be very sensitive to the DNA base-pair sequence. The positions of the resonance peaks in the calculated absorption spectrum of (dA)12 · (dT)12 are in a good agreement with those obtained by Fourier transform IR spectroscopy (Powell JW et al. 1987 Phys Rev A 35: 3929–3939). Received: 20 June 2000 / Accepted: 5 January 2001/ Published online: 3 May 2001  相似文献   

13.
We have generated a novel silver(I)-mediated unnatural DNA base pair consisting of two 2,6-bis(ethylthiomethyl)pyridine nucleobases SPy. This metallo-base pair has a remarkably high pairing stability and selectivity which rivals that of the natural base pairs dA:dT and dC:dG. UV-melting experiments revealed that the dSPy:dSPy self-pair can replace natural base pairs at multiple sites and still form stable DNA duplexes.  相似文献   

14.
Two-dimensional infrared spectroscopy was recently used to measure the vibrational couplings between carbonyl bonds located on DNA nucleobases (Krummel, A. T.; Mukherjee, P.; Zanni, M. T. J. Phys. Chem. B 2003, 107, 9165 and Krummel, A. T.; Zanni, M. T. J. Phys. Chem. B 2006, 110, 13991). Here, we extend the coupling model derived from these 2D IR experiments to simulate the vibrational absorption and vibrational circular dichroism (VCD) spectra of three double-stranded DNA oligomers: poly(dG)-poly(dC), poly(dG-dC), and dGGCC. Using this model, we determine that the VCD spectrum of A-form poly(dG)-poly(dC) is dominated by interactions between stacked bases, whereas the coupling between base pairs and stacked bases carries equal importance in the VCD spectrum of B-form poly(dG-dC). We also simulate the absorption and VCD spectra of dGGCC, which is a combination of A- and B-form configurations. These simulations give insight into the structural interpretation of VCD and absorption spectroscopies that have long been used to monitor DNA secondary structure and kinetics.  相似文献   

15.
The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.  相似文献   

16.
The 2,6-diamino-4-hydroxy-5-formamidopyrimidine of 2'-deoxyguanosine (FaPydG) is one of the major DNA lesions found after oxidative stress in cells. To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG). In addition, oligonucleotides containing the cyclopentane analogue of 2'-deoxyguanosine (cdG), and oligonucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were synthesized. The thermodynamic stability of duplexes containing these building blocks and all canonical counterbases were determined by concentration dependent melting-point measurements (van't Hoff plots). The data reveal that cFaPydG greatly destabilizes a DNA duplex (DeltaDeltaG degrees (298K) approximately 2-4 kcal mol(-1)). The optimal base pairing partner for the cFaPydG lesion is dC. Investigation of duplexes containing dG and cdG shows that the effect of substituting the deoxyribose by a cyclopentane moiety is marginal. The data also provide strong evidence that the FaPydG lesion is unable to form a base pair with dA. Our computational studies indicate that the syn-conformation required for base pairing with dA is energetically unfavorable. This is in contrast to 8-oxodG for which the syn-conformation represents the energetic minimum. Kinetic primer extension studies using S. cerevisiae Pol eta reveal that cFaPydG is replicated in an error-free fashion. dC is inserted 2-3 orders of magnitude more efficiently than dT or dA, showing that FaPydG is a lesion which retains the coding potential of dG. This is also in contrast to 8-oxodG, for which base pairing with dC and dA was established.  相似文献   

17.
The procedure developed in Part I of this series is applied to the homopolymeric sequences poly(dA) · poly(dT) and poly(dG) · poly(dC) on the double helical structure of B-DNA. Some aspects of the base sequence influence on the polymer's attraction for water molecule are described. The results are used to discuss the general hydration features of those systems in relation to recent experimental studies of DNA single crystals.  相似文献   

18.
Three new ruthenium(II) complexes containing the tris(1-pyrazolyl)methane (tpm) ligand have been prepared: [Ru(tpm)(L)(dppn)]n+ (where n = 1; L = Cl (5), n = 2; L = MeCN (6) and pyridine (7); dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine). Complex 6 was structurally characterized by single-crystal X-ray diffraction. Binding parameters of these complexes with calf thymus DNA are reported and compared to those obtained for a previously reported monocation, [RuCl(tpm)(dppz)]+. Binding studies with the dications and the synthetic oligonucleotides poly(dA).poly(dT) and poly(dG).poly(dC) have also been determined. Photophysical and electrochemical properties of 5-7 have been investigated and compared with their dipyridophenazine (dppz) analogues.  相似文献   

19.
Linear and nonlinear IR spectroscopic studies of nucleic acids can provide crucial information on solution conformations of DNA double helix and its complex with other molecules. Carrying out density functional theory calculations of A-, B-, and Z-form DNA's, the authors obtained vibrational spectroscopic properties as well as coupling constants between different basis modes. The vibrational couplings that determine the extent of exciton delocalization are strongly dependent on DNA conformation mainly because the interlayer distance between two neighboring base pairs changes with respect to the DNA conformation. The Z-DNA has comparatively small interlayer vibrational coupling constants so that its vibrational spectrum depends little on the number of base pairs, whereas the A-DNA shows a notable dependency on the size. Furthermore, it is shown that a few distinctively different line shape changes in both IR and two-dimensional IR spectra as the DNA conformation changes from B to A or from B to Z can be used as marker bands and characteristic features distinguishing different DNA conformations.  相似文献   

20.
We determined the gas-phase acidities (ΔHacid) of four deoxyribonucleosides, i.e., 2′-deoxyadenosine (dA), 2′-deoxyguanosine (dG), 2′-deoxycytidine (dC), and 2′-deoxythymidine (dT) by applying the extended kinetic method. The negatively charged proton-bound hetero-dimeric anions, [A-H-B] of the deoxyribonucleosides (A) and reference compounds (B) were generated under electrospray ionization conditions. Collision-induced dissociation spectra of [A-H-B] were recorded at four different collision energies using a triple quadrupole mass spectrometer. The abundance ratios of the individual monomeric product ions were used to determine the ΔHacid of the deoxyribonucleosides. The obtained ΔHacid value follows the order dA7>dC7>dT7>dG. The ΔGacid (298 K) values were determined by using ΔGacid=ΔHacid-TΔSacid where the ΔHacid and ΔSacid values were determined directly from the kinetic method plots. The ΔHacid values were also predicted for the deoxyribonucleosides at the B3LYP/6-311+G**//B3LYP/6-311G** level of theory. The acidity trend obtained from the computational investigation shows good agreement with that obtained experimentally by the extended kinetic method. Theoretical calculations provided the most preferred deprotonation site as C5′-OH from sugar moiety in case of dA, and as −NH2 (dC and dG) or -NH- (dT) from nitrogenous base moiety in the case of other deoxyribonucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号