首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1432篇
  免费   64篇
  国内免费   11篇
化学   873篇
晶体学   19篇
力学   55篇
数学   212篇
物理学   348篇
  2023年   9篇
  2021年   16篇
  2020年   29篇
  2019年   10篇
  2018年   9篇
  2016年   25篇
  2015年   34篇
  2014年   40篇
  2013年   98篇
  2012年   48篇
  2011年   51篇
  2010年   57篇
  2009年   47篇
  2008年   64篇
  2007年   68篇
  2006年   62篇
  2005年   59篇
  2004年   55篇
  2003年   47篇
  2002年   33篇
  2001年   24篇
  2000年   21篇
  1999年   18篇
  1998年   19篇
  1997年   15篇
  1996年   17篇
  1995年   13篇
  1994年   15篇
  1993年   28篇
  1992年   31篇
  1991年   23篇
  1990年   23篇
  1989年   20篇
  1988年   12篇
  1987年   25篇
  1986年   19篇
  1985年   11篇
  1984年   25篇
  1983年   10篇
  1982年   18篇
  1981年   16篇
  1980年   13篇
  1977年   10篇
  1976年   12篇
  1975年   12篇
  1974年   12篇
  1972年   15篇
  1971年   10篇
  1969年   10篇
  1923年   9篇
排序方式: 共有1507条查询结果,搜索用时 15 毫秒
1.
The effect of donor (D)–acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two- and three-dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight-fold conductivity enhancement. The first evaluation of redox behavior of buckyball- or tetracyanoquinodimethane-integrated crystalline was conducted. In parallel with tailoring the D-A alignment responsible for “static” changes in materials properties, an external stimulus was applied for “dynamic” control of the electronic profiles. Overall, the presented D–A strategic design, with stimuli-controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.  相似文献   
2.
3.
A new uranyl containing metal–organic framework, RPL-1 : [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL - 1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Å and is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.  相似文献   
4.
We followed the self-assembly of high-molecular weight MePEG- b -PCL (poly(methyl ethylene glycol)-block-poly(ε-caprolactone)) diblock and MePEG- b -PBO- b -PCL (poly(methyl ethylene glycol)-block-poly(1,2-butylene oxide)-block-poly(ε-caprolactone)) into micelles using molecular dynamics simulation with a coarse grain (CG) force field based on quantum mechanics (CGq FF). The triblock polymer included a short poly(1,2-butylene oxide) (PBO) at the hydrophilic-hydrophobic interface of these systems. Keeping the hydrophilic length fixed (MePEG45), we considered 250 chains in which the hydrophobic length changed from PCL44 or PBO6- b -PCL43 to PCL62 or PBO9- b -PCL61. The polymers were solvated in explicit water for 2 μs of simulations at 310.15 K. We found that the longer diblock system undergoes a morphological transition from an intermediate rod-like micelle to a prolate-sphere, while the micelle formed from the longer triblock system is a stable rod-like micelle. The two shorter diblock and triblock systems show similar self-assembly processes, both resulting in slightly prolate-spheres. The dynamics of the self-assembly is quantified in terms of chain radius of gyration, shape anisotropy, and hydration of the micelle cores. The final micelle structures are analyzed in terms of the local density components. We conclude that the CG model accurately describes the molecular mechanisms of self-assembly and the equilibrium micellar structures of hydrophilic and hydrophobic chains, including the quantity of solvent trapped inside the micellar core.  相似文献   
5.
A new fluorescent ribonucleoside alphabet (mthN) consisting of pyrimidine and purine analogues, all derived from methylthieno[3,4-d]pyrimidine as the heterocyclic core, is described. Large bathochromic shifts and high microenvironmental susceptibility of their emission relative to previous alphabets derived from thieno[3,4-d]pyrimidine (thN) and isothiazole[4,3-d]pyrimidine (tzN) scaffolds are observed. Subjecting the purine analogues to adenosine deaminase, guanine deaminase and T7 RNA polymerase indicate that, while varying, all but one enzyme tolerate the corresponding mthN/mthNTP substrates. The robust emission quantum yields, high photophysical responsiveness and enzymatic accommodation suggest that the mthN alphabet is a biophysically viable tool and can be used to probe the tolerance of nucleoside/tide-processing enzymes to structural perturbations of their substrates.  相似文献   
6.
The electrical impedance behavior of gellan gum (GG), GG–carbon nanotube, and GG–carbon nanofiber hydrogel composites is reported. It is demonstrated that the impedance behavior of these gels can be modeled using a Warburg element in series with a resistor. Sonolysis (required to disperse the carbon fillers) does not affect GG hydrogel electrical conductivity (1.2 ± 0.1 mS/cm), but has a detrimental effect on the gel's mechanical characteristics. It was found that the electrical conductivity (evaluated using impedance analysis) increases with increasing volume fraction of the carbon fillers and decreasing water content. For example, carbon nanotube containing hydrogels exhibited a six‐ to sevenfold increase in electrical conductivity (to 7 ± 2 mS/cm) at water content of 82%. It is demonstrated that at water content of 95 ± 2% the electrical behavior of multiwalled nanotube containing hydrogels transitions (percolates) from transport dominated by ions (owing to GG) to transport dominated by electrons (owing to the carbon nanotube network). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 864–871  相似文献   
7.
8.
Metabolic pathways are highly regulated by effector molecules that influences the rate of enzymatic reactions. Inspired by the catalytic regulation found in living cells, we report a Pt2L4 cage of which the activity can be controlled by effectors that bind inside the cage. The cage shows catalytic activity in the lactonization of alkynoic acids, with the reaction rates dependent on the effector guest bound in the cage. Some effector guests enhance the rate of the lactonization by up to 19-fold, whereas one decreases it by 5-fold. When mixtures of specific substrates are used, both starting materials and products act as guests for the Pt2L4 cage, enhancing its catalytic activity for one substrate while reducing its activity for the other. The reported regulatory behavior obtained by the addition of effector molecules paves the way to the development of more complex, metabolic-like catalyst systems.  相似文献   
9.
Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuI complexes with N-heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled by in crystallo photolysis at low temperature.  相似文献   
10.
Stage-I fatigue cracks are commonly described by the model of Bilby, Cottrell and Swinden (BCS model). However, since several experimental investigations have shown a dislocation-free zone (DFZ) in front of crack-tips, it is necessary to validate the new DFZ model and to examine the deviations to the BCS model. Therefore, the dislocation density distribution is derived from height profiles of slip lines in front of stage-I fatigue cracks in CMSX4® single crystals measured by contact-mode atomic force microscopy. This is possible, because the cracks are initiated at notches milled by focused ion beam technique directly on slip planes with a high Schmid factor. Consequently, the directions of the Burgers vectors are well known; it is possible to calculate the dislocation density distributions from the height profiles. The measured distributions are compared to the calculated distribution function of the DFZ model proposed by Chang et al. The additionally measured microscopic friction stress of the dislocations is then used to calculate the influence of grain boundaries on the dislocation density distribution in front of stage-I cracks. The calculation is done by the extended DFZ model of Shiue et al. and compared with the measured distribution function in polycrystalline specimens. Finally, the crack-tip sliding displacement as a measure for the crack propagation rate is compared for the DFZ model and the BCS model with the experimentally revealed values. The important result: the often used BCS model does not reflect the experimental measurements. On the contrary, the DFZ model reflects the measurements at stage-I cracks qualitatively and quantitatively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号