首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 184 毫秒
1.
取代基对N—H…O=C氢键三聚体中氢键强度的影响   总被引:1,自引:0,他引:1  
使用MP2方法研究了氢键三聚体中N-H…O=C氢键强度,探讨了氢键受体分子中不同取代基对N-H…O=C氢键强度的影响.研究表明,不同取代基对氢键三聚体中N-H…O=C氢键强度的影响是不同的:取代基为供电子基团,氢键键长r(H…O)缩短,氢键强度增强;取代基为吸电子基团,氢键键长r(H…O)伸长,氢键强度减弱.自然键轨道(NBO)分析表明,N-H…O=C氢键强度越强,氢键中氢原子的正电荷越多,氧原子的负电荷越多,质子供体和受体分子间的电荷转移越多.供电子基团使N-H…O=C氢键中氧原子的孤对电子n(O)对N-H的反键轨道σ~*(N-H)的二阶相互作用稳定化能增加,吸电子基团使这种二阶相互作用稳定化能减小.取代基对与其相近的N-H…O=C氢键影响更大.  相似文献   

2.
使用密度泛函理论B3LYP方法和二阶微扰理论MP2方法对由1-甲基尿嘧啶与N-甲基乙酰胺所形成的氢键复合物中的氢键强度进行了理论研究, 探讨了不同取代基取代氢键受体分子1-甲基尿嘧啶中的氢原子对氢键强度的影响和氢键的协同性. 研究表明: 供电子取代基使N-H…O=C氢键键长r(H…O)缩短, 氢键强度增强; 吸电子取代基使N-H…O=C氢键键长r(H…O)伸长, 氢键强度减弱. 自然键轨道(NBO)分析表明: 供电子基团使参与形成氢键的氢原子的正电荷增加, 使氧原子的负电荷增加, 使质子供体和受体分子间的电荷转移量增多; 吸电子基团则相反. 供电子基团使N-H…O=C氢键中氧原子的孤对电子轨道n(O)对N-H的反键轨道σ*(N-H)的二阶相互作用稳定化能增强, 吸电子基团使这种二阶相互作用稳定化能减弱. 取代基对与其相近的N-H…O=C氢键影响更大.  相似文献   

3.
N-H…O红移氢键和蓝移氢键的理论研究   总被引:7,自引:0,他引:7       下载免费PDF全文
用理论方法研究了复合物HCHO…HNO, HCOOH…HNO, HCHO…NH3, HCOOH…NH3, HCHO…NH2F和HCOOH…NH2F分子间氢键. 在MP2/6-31+G(d,p), MP2/6-311++G(d,p), B3LYP/ 6-31+G(d,p)和B3LYP/6-311++G(d,p)水平上, 利用标准方法和均衡校正方法对6种复合物进行了几何优化和振动频率计算. 计算结果表明: 在复合物HCHO…HNO和HCOOH…HNO中, HNO中N—H键强烈收缩, 存在显著的N—H…O蓝移氢键. 在复合物HCHO…NH3, HCOOH…NH3, HCHO…NH2F和HCOOH…NH2F中, NH3和NH2F中N—H键伸长, 存在N—H…O红移氢键. 利用自然键轨道(NBO)分析表明, 电子供体轨道和电子受体轨道之间相互作用的稳定化能、电子密度重排、轨道再杂化和结构重组是决定氢键红移和蓝移的主要因素. 其中, 轨道间稳定化能属于键伸长效应, 电子密度重排、轨道再杂化和结构重组属于键收缩效应. 在复合物HCHO…HNO和HCOOH…HNO中, 由于键收缩效应处于优势地位导致N—H…O蓝移氢键存在. 在复合物HCHO…NH3, HCOOH…NH3, HCHO…NH2F和HCOOH…NH2F中, 键伸长效应居于主导地位,N—H…O红移氢键出现.  相似文献   

4.
《化学学报》2009,67(7):599-606
利用理论方法研究了乙醛二聚体内的氢键. 在MP2/6-31+G(d), B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)和B3LYP/6-311++G(3df,2p)水平上, 利用常规方法和均衡校正方法对3种稳定的乙醛二聚体进行了几何优化和振动频率计算. 计算结果表明: 在二聚体A和C中乙醛中C—H键强烈收缩, 存在显著的C—H…O蓝移型氢键. 自然键轨道(NBO)分析表明, 电子供体轨道和电子受体轨道之间相互作用的稳定化能、分子内电子密度重排、轨道再杂化和结构重组是决定氢键红移和蓝移的主要因素. 其中, 轨道间稳定化能属于键伸长效应, 分子内电子密度重排、轨道再杂化和电子受体内部结构重组属于键收缩效应. 在二聚体A和C中, 由于键收缩效应处于优势地位导致C—H…O蓝移氢键存在.  相似文献   

5.
肖神  方意  刘玉震  马飞燕  冀利妃 《化学研究》2014,(2):187-194,200
采用耦合簇量子化学方法 CCSD/aug-cc-pVDZ研究了嘧啶与嘌呤之间的相互作用,利用基函数叠加误差法(BSSE)消除相互作用能误差,并进行了几何结构优化;采用Gaussian 03程序包中的NBO程序分析了二阶稳定化能及自然键轨道.与此同时,应用约化密度函数(RDG)填色等值面图对体系进行了图形化分析,分析了氢键相互作用所在的空间位置和相对强度,以及氢键相互作用的性质,以进一步了解二者的相互作用.结果表明,嘧啶-嘌呤体系的相互作用属于闭合壳层静电相互作用.电子密度跃迁矩阵分析结果表明,激发区域主要集中在N原子和O原子处,涉及的空间广度很大,第一激发态主要涉及前线分子轨道,属于σ→π*或n→π*类型跃迁.  相似文献   

6.
利用量子化学方法研究了气相和水溶液下,氨基酸侧链与鸟嘌呤和胞嘧啶间的氢键作用.应用B3LYP/6-31+G(d,p)方法优化复合物几何结构,使用MP2/aug-cc-p VDZ方法进行复合物能量、自然键轨道(NBO)电荷和二阶稳定化能的计算.结果表明,水溶液可使氨基酸侧链与碱基或碱基对之间氢键键能显著减小;带电复合物气相和水溶液氢键键能之差范围为50.63~146.48 k J/mol,中性为0.17~24.94 k J/mol;电荷的转移量与氢键键能成正比,电荷转移量越多,复合物越稳定;二阶稳定化能与氢键键长成反比,与电荷转移量成正比,且气相与水溶液氢键二阶稳定化能之比约为两相的电荷转移量之比.水溶液对该类体系中氢键作用具有明显影响.  相似文献   

7.
多肽中氢键强度的理论研究   总被引:4,自引:0,他引:4  
用B3LYP/6-31G*法优化了多肽分子的几何构型,计算了各个构型的电荷分布和氢键酸度,进而对多肽分子中的氢键强度进行了研究.结果表明,多肽分子中氢键的强度同时取决于形成氢键的H…O原子间距R和N-H…O之间的键角β;多肽分子倾向于形成R值小、β值大的大环氢键.310螺旋结构的多肽分子中的氢键具有协同效应,分子越大,分子中氢键越多,氢键的协同效应越强.  相似文献   

8.
优化得到了17个取代胸腺嘧啶与腺嘌呤形成的氢键复合物的结构, 并计算了这些复合物的结合能, 探讨了胸腺嘧啶上不同取代基对结合能的影响. 结果表明, CF3取代的胸腺嘧啶与腺嘌呤间的结合能大于胸腺嘧啶与腺嘌呤间的结合能, 这可能是屈氟尿苷具有阻止病毒及肿瘤扩散功能的原因所在. SO3H, CN和NO2取代的胸腺嘧啶与腺嘌呤间具有更大的结合能, 表明这3个基团取代的胸腺嘧啶也可能具有潜在的抗肿瘤作用. 分子中原子理论与自然键轨道分析表明, 在所有体系中, 氢键N—H…N最强, N—H…O=C次之, C—H…O=C最弱, 轨道作用在氢键作用中占有重要地位.  相似文献   

9.
尿素及硫脲与羰基化合物间的氢键相互作用   总被引:1,自引:0,他引:1  
利用量子化学二级微扰理论方法对尿素及硫脲衍生物与羰基化合物之间的氢键复合物进行了研究, 在自然键轨道分析基础上进一步揭示了氢键本质并研究了取代基效应. 结果表明, 羰基化合物中供电子基和共轭基, 尿素及硫脲中的吸电子基和共轭基均有利于氢键的形成. 结合尿素与硫脲的催化反应过程, 讨论了氢键复合物两种可能的顺反异构并分析比较了顺反式构象异构体的稳定能大小.  相似文献   

10.
优化得到了17个取代胸腺嘧啶与腺嘌呤形成的氢键复合物的结构,并计算了这些复合物的结合能,探讨了胸腺嘧啶上不同取代基对结合能的影响. 结果表明,CF3取代的胸腺嘧啶与腺嘌呤间的结合能大于胸腺嘧啶与腺嘌呤间的结合能,这可能是屈氟尿苷具有阻止病毒及肿瘤扩散功能的原因所在. SO3H,CN和NO2取代的胸腺嘧啶与腺嘌呤间具有更大的结合能,表明这3个基团取代的胸腺嘧啶也可能具有潜在的抗肿瘤作用. 分子中原子理论与自然键轨道分析表明,在所有体系中,氢键N—H…N最强,N—H…O=C次之,C—H…O=C最弱,轨道作用在氢键作用中占有重要地位.  相似文献   

11.
Ammonia is an important molecule due to its wide use in the fertiliser industry. It is also used in aminolysis reactions. Theoretical studies of the reaction mechanism predict that in reactive complexes and transition states, ammonia acts as a hydrogen bond donor forming N−H⋅⋅⋅O hydrogen bond. Experimental reports of N−H⋅⋅⋅O hydrogen bond, where ammonia acts as a hydrogen bond donor are scarce. Herein, the hydrogen bond donor ability of ammonia is investigated with three chalcogen atoms i. e. O, S, and Se using matrix isolation infrared spectroscopy and electronic structure calculations. In addition, the chalcogen bond acceptor ability of ammonia has also been investigated. The hydrogen bond acceptor molecules used here are O(CH3)2, S(CH3)2, and Se(CH3)2. The formation of the 1 : 1 complex has been monitored in the N−H symmetric and anti-symmetric stretching modes of ammonia. The nature of the complex has been delineated using Atoms in Molecules analysis, Natural Bond Orbital analysis, and Energy Decomposition Analysis. This work presents the first comparison of the hydrogen bond donor ability of ammonia with O, S, and Se.  相似文献   

12.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   

13.
The factors responsible for the enhancement of the halogen bond by an adjacent hydrogen bond have been quantitatively explored by means of state-of-the-art computational methods. It is found that the strength of a halogen bond is enhanced by ca. 3 kcal/mol when the halogen donor simultaneously operates as a halogen bond donor and a hydrogen bond acceptor. This enhancement is the result of both stronger electrostatic and orbital interactions between the XB donor and the XB acceptor, which indicates a significant degree of covalency in these halogen bonds. In addition, the halogen bond strength can be easily tuned by modifying the electron density of the aryl group of the XB donor as well as the acidity of the hydrogen atoms responsible for the hydrogen bond.  相似文献   

14.
The individual hydrogen bonding energies in N-methylacetamide chains were evaluated at the MP2/6-31+G** level including BSSE correction and at the B3LYP/6-311++G(3df,2pd) level including BSSE and van der Waals correction. The calculation results indicate that compared with MP2 results, B3LYP calculations without van der Waals correction underestimate the individual hydrogen bonding energies about 5.4 kJ mol?1 for both the terminal and central hydrogen bonds, whereas B3LYP calculations with van der Waals correction produce almost the same individual hydrogen bonding energies as MP2 does for those terminal hydrogen bonds, but still underestimate the individual hydrogen bonding energies about 2.5 kJ mol?1 for the hydrogen bonds near the center. Our calculation results show that the individual hydrogen bonding energy becomes more negative (more attractive) as the chain becomes longer and that the hydrogen bonds close to the interior of the chain are stronger than those near the ends. The weakest individual hydrogen bonding energy is about ?29.0 kJ mol?1 found in the dimer, whereas with the growth of the N-methylacetamide chain the individual hydrogen bonding energy was estimated to be as large as ?62.5 kJ mol?1 found in the N-methylacetamide decamer, showing that there is a significant hydrogen bond cooperative effect in N-methylacetamide chains. The natural bond orbital analysis indicates that a stronger hydrogen bond corresponds to a larger positive charge for the H atom and a larger negative charge for the O atom in the N-H?O=C bond, corresponds to a stronger second-order stabilization energy between the oxygen lone pair and the N-H antibonding orbital, and corresponds to more charge transfer between the hydrogen bonded donor and acceptor molecules.  相似文献   

15.
Electronic structure calculations have been carried out to provide a molecular interpretation for dihydrogen phosphate stability in water relative to that of metaphosphate. Specifically, hydration enthalpies of biologically important metaphosphate and dihydrogen phosphate with one to three waters have been computed with second-order M?ller-Plesset perturbation and density functional theory (B3LYP) with up to the aug-cc-pvtz basis set and compared to experiment. The inclusion of basis set superposition error corrections and supplemental diffuse functions are necessary to predict hydration enthalpies within experimental uncertainty. Natural bond orbital analysis is used to rationalize underlying hydrogen bond configurations and key orbital interactions responsible for the experimentally reported difference in hydration enthalpies between metaphosphate and dihydrogen phosphate. In general, dihydrogen phosphate forms stronger hydrogen bonds compared to metaphosphate due to a greater charge transfer or enhanced orbital overlap between the phosphoryl oxygen lone pairs, n(O), and the antibonding O-H bond of water. Intramolecular distal lone pair repulsion with the donor n(O) orbital of dihydrogen phosphate distorts symmetric conformations, which improves n(O) and sigma*(O-H) overlap and ultimately the hydrogen bond strength. Unlike metaphosphate, water complexed to dihydrogen phosphate can serve as both a hydrogen bond donor and a hydrogen bond acceptor, which results in cooperative charge transfer and a reduction of the energy gap between n(O) and sigma*(O-H), leading to stronger hydrogen bonds. This study offers insight into how orbital interactions mediate hydrogen bond strengths with potential implications on the understanding of the kinetics and mechanism in enzymatic phosphoryl transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号