首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
建立了电感耦合等离子体发射光谱法测定直接法氧化锌中铝、铜、铅、铁、镉、锰元素含量的分析方法。确定了溶样方法和分析谱线,对方法精密度和准确度进行了考察,结果表明,各元素的相对标准偏差在2.5%~6.5%,加标回收率在92%~105%,测定结果与其它经典分析方法测定结果一致。所建立的方法准确、快速,适用于直接法氧化锌中多元素同时测定。  相似文献   

2.
建立了电感耦合等离子体发射光谱法测定直接法氧化锌中铝、铜、铅、铁、镉、锰元素含量的分析方法。确定了溶样方法和分析谱线,对方法精密度和准确度进行了考察,结果表明,各元素的相对标准偏差在2.5%~6.5%,加标回收率在92%~105%,测定结果与其它经典分析方法测定结果一致。所建立的方法准确、快速,适用于直接法氧化锌中多元素同时测定。  相似文献   

3.
采用氢氟酸-硝酸-高氯酸体系对华阳川铀多金属矿进行高温消解,并对消解条件进行优化,建立了电感耦合等离子体发射光谱(ICP-OES)法对华阳川铀多金属矿中铌和铅元素进行测定的方法。结果表明,方法线性相关系数分别为0.9998和0.9999,两种元素在标准样品中的加标回收率为96.0%~104%,平行样的相对标准偏差为0.50%~3.3%。实际样品加标回收率为96.1%~102%。方法快速、准确。  相似文献   

4.
采用基体匹配法绘制校准曲线和镧元素作内标校正来消除基体效应和仪器漂移的影响, 建立了电感耦合等离子体发射光谱仪测定锌铝镁合金中铝、镁元素的分析方法. 将方法应用于锌铝镁合金试样的测定, 结果的相对标准偏差(RSD)在0.86%~2.13%之间, 加标回收率为96.4%~99.6%. 并与化学分析方法进行了比对, 两种方法测定值吻合较好.  相似文献   

5.
建立了直接进样石墨炉原子吸收光谱法测定残渣燃料油中微量钠、钒元素含量的快速检测方法。通过选择谱线和背景校正模式,优化了石墨炉条件;根据待测样品和元素特点优化了升温程序,待测样品无需前处理,直接通过石墨舟进样检测。残渣燃料油中钠、钒元素的检出限分别为0.108 ng和0.876ng;3个浓度水平下,钠元素平均回收率在89%~94%之间,钒元素平均回收率在89%~91%。采用本方法对实际残渣燃料油样品进行测定,钠、钒元素的测定结果与使用IP 501方法测定的结果基本一致。  相似文献   

6.
建立电感耦合等离子体发射光谱法测定DD6单晶高温合金中铝、铬、钴元素含量的方法。采用密闭微波消解法对样品进行前处理,利用模拟溶液分别考察基体元素和共存元素的光谱干扰及非光谱干扰对测定结果的影响,确定了铝、铬、钴的分析谱线分别为394.401,267.716,228.616 nm,通过基体匹配法对非光谱干扰进行补偿。待测元素在各自的质量浓度范围内与光谱强度呈良好的线性关系,相关系数均为0.9999,铝、铬、钴的检出限分别为0.110,0.018,0.003 μg/mL。测定结果的相对标准偏差为0.99%~1.21%(n=11),铝、铬、钴的加标回收率在分别为96.45%~103.69%,98.20%~99.40%,100.22%~102.85%。该方法简便、快速,具有较高的准确度,适用于镍基单晶高温合金中铝、铬、钴元素的测定。  相似文献   

7.
采用王水溶样,ICP-AES法同时测定烟火药剂中的铅、铬、铋元素的含量。对烟火药剂样品消解方法、方法的检出限、分析波长、精密度、回收率等进行了实验。结果显示其相对标准偏差均在5%以下,回收率在86.2%~102.2%之间。运用该方法对不同烟火药剂进行检测,测定结果与AAS单元素分析结果吻合。  相似文献   

8.
建立了铅精矿中主量元素铅和次量元素铜的连续滴定分析方法。将铅滴定分析中经硫酸沉淀分离后的滤液,再经硫酸冒烟,用去离子水溶解后,通过滴定法对铅精矿中高含量铜进行分析。该方法铅精矿中铅的检出限为1.4 mg/g,铜的检出限为1.0 mg/g。对3个实际样品中铅、铜分别进行测定,测定结果的相对标准偏差均小于3.0%(n=7),铅的加标回收率为99.71%~100.19%,铜的加标回收率为99.33%~100.47%。该方法通过一次溶样,对铅精矿中的铅、铜连续进行滴定分析,方法快速、准确,适用于铅精矿中含量大于1.4%的铅和含量大于1.0%的铜的测定。  相似文献   

9.
利用微波消解/ICP-MS法对青海省不同生长地点的镰形棘豆中18种元素进行了含量测定.方法的加样回收率在96.42%~104.29%之间,相对标准偏差在0.87%~2.13%之间,具有较高的准确度和精确度.结果表明镰形棘豆含有丰富的微量元素,同时重金属元素含量较低.试验结果为镰形棘豆的药效性和药理毒理提供了理论依据.  相似文献   

10.
本文研究了电感耦合等离子体原子发射光谱法(ICP-AES)测定Al-Cu-Li 系合金中Cu、Li、Ag、Mg和Zr的含量的方法。对样品溶解、共存元素干扰、基体效应进行了研究,本方法采用硝酸和过量盐酸溶解试样,选择Cu324.752、Li670.784、Ag328.068、Mg285.213和Zr343.823作为分析线。配置标准工作曲线溶液时用纯铝打底消除基体效应。本方法Cu、Li、Ag、Mg和Zr的分析范围分别为0.10%~4.00%, 0.10%~2.00%, 0.10%~1.00%, 0.10%~1.00% 和0.01%~0.50%。各元素的检出限均小于0.01μg/ mL,加标回收率在94 %~106 %之间,相对标准偏差均小于2%。本方法用于标准物质的测定,结果与认定值一致。  相似文献   

11.
元素活动态分析作为深穿透地球化学的新方法,得到了广泛的应用。将ELEMENT XR型高分辨率等离子体质谱(HR-ICP-MS)法引入元素活动态的分析中,具有动态线性范围宽(10-12~1012)和灵敏度高的特点,使可同时测定的元素拓展至57种,大大提高了工作效率。根据实验结果结合响应面分析法,对HR-ICP-MS的主要仪器条件辅助气流量、雾化气流量和采样深度等进行了优化,确定了仪器的最佳测定条件;对铁锰氧化态的提取条件进行了系统研究:分别考察了提取时间、液固比、离心转速、提取液放置时间对提取效果的影响,确定了最佳提取条件,提取时间为24 h,液固比为15∶1,离心转速4000 r/min;在最优的测定条件和提取条件下,建立了HR-ICP-MS对铁锰氧化物结合相中57种元素的分析方法,得到了各元素的方法检出限和方法精密度,微量和痕量元素的方法检出限达到了10-9(ng/g),主量元素的检出限为10-6(mg/kg)水平,精密度为2.3%~32.5%,完全满足当前元素活动态的分析测试需要。  相似文献   

12.
The analytical procedure for the determination of Ba and rare earth elements in rocks and minerals by ICP-MS is described. The yield of mono-oxide and hydroxide ions of Ba and rare earth elements, and chloride ions of Ba has been determined. A Microsoft Excel spreadsheet template has been written to calculate the expected peak intensities for all possible analyte species (M+, MO+, MOH+ and MCl+) as a function of the mass number. The degree of interferences of different analyte isotopes is estimated and interferent equivalent concentrations are given for elements, for which no isotope free from interferences is available. The method is applied to the analysis of the four Geo-Reference samples AC-E, GSP-1, G-2 and AGV-1; the analytical accuracy is better than ±10% for most of the elements when compared with recommended reference values.  相似文献   

13.
The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of μ-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of 62Ni, 97Mo, 117Sn and 206Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining μ-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids.  相似文献   

14.
Three analytical methods, namely, inductively coupled plasma sector field mass spectrometry (ICP-SFMS); inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) and filter-furnace electrothermal atomic-absorption spectroscopy (FF-ET-AAS) for the determination of V, Mn, Ni, Cu, As, Sr, Mo, Cd and Pb in ground natural water samples were compared and evaluated for their capacity to provide reliable and precise results. Two certified reference materials (SLEW-3 Estuarine Water; SLRS-4 River Water) were analysed to prove that accurate results could be obtained by using all the listed methods with properly optimised parameters. The limit of detection (LOD) for V, Mn, Ni, Cu, As, Sr, Mo, Cd and Pb provided by the ICP-MS methods ranged from 0.001 to 0.05 µg L?1. Such LOD proved sufficient for the reliable determination of the listed elements in ground natural waters. However, the LOD of the FF-ET-AAS was approximately two orders of magnitude higher than that of ICP-MS, which made it impossible to quantify V, Mn, Ni, Mo and Pb. The effects of the usage of the collision cell mode in ICP-QMS and of the desolvation system Apex for ICP-SFMS to eliminate oxide ions levels were investigated. For all three analytical methods, the influence of the matrix effect on the results of the determination of the investigated elements using matrix model solution, external calibration and standard addition methods was evaluated. A comparison using a paired Student’s t-test between the results obtained by both ICP-MS methods for V, Mn, Ni, Cu, As, Sr, Mo, Cd and Pb concentrations in ground natural waters showed that there was no significant difference on a 95% confidence level. The precision of the results for ICP-SFMS, ICP-QMS and FF-ET-AAS varied between ~0.5 and 11; 2.5 and 12.5; 3 and 13.5%, respectively. Moreover, ICP-SFMS equipped with the desolvation system APEX proved a better choice for As, Cu and Mn analysis due to its better LOD (0.008, 0.03 and 0.02 µg L?1, respectively) and precision (Sr ≤ 5.0; 7.5; 9.0%, respectively) compared to ICP-QMS and FF-ET-AAS.  相似文献   

15.
An ICP-MS method for determination of 60 elements in plant samples is proposed based on optimization of digestion, recommending use of HF besides HNO3 and H2O2 and calibration procedures, using CRMs for construction of calibration curves. Adequate choice of analytical isotopes and various measurement conditions (cold plasma for the determination of Al, Ba, Ca, Fe, K, Mg, Mn, Na, Si and Sr and DRC mode for determination of Ag, As, Ni, Pd, Pt, Se and V) as well as introduction of appropriate corrections lead to determination of as large number of elements with quadropole ICP-MS as with the more expensive SF-ICP-MS. Two measurements are performed: cold plasma and standard/DRC mode. The analytical characteristics of the method are demonstrated by analysis of five CRMs and the agreement of the experimental results with the certified/information/literature values is very good. Detection limits are low enough to permit the determination of all elements but platinum metals at background level. The applicability of the method is demonstrated by analysis of Taraxacum officinale (dandelion) samples collected from regions with different anthropogenic influence. The results indicate high degree of pollution round the Pb-Zn smelter with As, Cd, Cu, Ni, Pb and Zn and increased concentrations of B, Be, Bi, Hg, In, Mn, Sb, Se, Sn, Ti, Tl, V and Zr. The dandelion sample, collected along a highway has increased concentrations of traffic released elements: Pt, Pd, Rh, Ce, La, Pb as well as Cu, Zn, Ba and Rb.  相似文献   

16.
We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg2+ and MeHg+ species. The separation of Hg2+ and MeHg+ was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl2-based VG techniques for the vaporization of MeHg+ was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg2+ and MeHg+ were also improved to 25- and 7-fold, respectively. With the use of our established HPLC–UV/nano-TiO2–ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits—0.1 and 0.03 ng/mL for Hg2+ and MeHg+, respectively. A series of validation experiments—analysis of the NIST 2672a Standard Urine Reference Material and other urine samples—confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg2+ and MeHg+ species in real samples.  相似文献   

17.
A novel method was developed for the direct determination of trace quantities of rare earth elements (REEs) in high purity erbium oxide dissolved in nitric acid by inductively coupled plasma mass spectrometry (ICP-MS) in this work. The mass spectra overlap interferences arose from Er matrix on the neighbouring and monoisotopic analytes of 165Ho(100) and 169Tm(100) were eliminated by adjusting instrumental peak resolution value from 0.7 to 0.3 amu. The matrix suppression effect of Er on the ion peak signals of REEs impurities was effectively compensated with spiking In as internal standard element. The limit of quantitation (LOQ) of REEs impurities was from 0.0090 to 0.025 μg g−1, the recoveries of spiked sample for REEs were found to be in the range of 90.3-107% through using the proposed method and relative standard deviation (R.S.D.) varied between 2.5% and 6.7%. The novel methodology had been found to be suitable for the direct determination of trace REEs impurities in 99.999-99.9999% high purity Er2O3 and the results obtained from this method keep in good agreement with that acquired from high resolution ICP-MS.  相似文献   

18.
An analytical method has been developed for the determination of low-level99Tc in environmental samples by High Resolution ICP-MS. The method consists of leaching of99Tc by HNO3 and separation by three different solvent extractions with 30% TOA-xylene, MEK, and cyclohexanone. Finally, purification of99Tc was made by using an anion exchange resin column to reduce dissolved solids content. The final solution was adjusted to 1M HNO3 for introducing into the HR-ICP-MS. The accuracy and precision of the method was confirmed to be satisfactory by applying this technique to the determination of99Tc in IAEA marine algae sample (AG-B-1). Measurements of99Tc using 0.5–2.5 g of sediment samples from the Irish Sea, UK, were successfully performed by the present method.  相似文献   

19.
Platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), iridium (Ir), and osmiun (Os) are platinum-group elements with similar physic-chemical properties, and have important applications in geochemistry and environmental chemistry. However, due to their low abundance and inhomogeneous distribution in natural ores as well as the nugget effect, the accurate determination of the platinum-group elements has been a challenge for geological analysis. In this work, self-prepared and purified sodium carbonate (NiCO3) instead of commercial nickel oxide (NiO) was used as the fire assay collector in order to greatly reduce the reagent blank and method detection limits. In addition, the fuming time of HClO4 was strictly controlled at 10?min and a high sensitive method was developed for the simultaneous determination of ultra-trace Pt, Pd, Ru, Rh, and Ir in minerals by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration with the nickel sulfide fire assay. Under the optimized conditions, the linear ranges of Pt, Pd, Ru, Rh, and Ir were between 0 and 100?ng mL?1, with correlation coefficients exceeding 0.9997. The detection limits were 0.015, 0.056, 0.014, 0.004, 0.012?ng mL?1 (for 10?g sample) for Pt, Pd, Ru, Rh and Ir, respectively. The developed method was successfully applied to analyze Chinese Certified Reference Materials (CRMs) GBW07288, GBW07289, GBW07290, GBW07291, GBW07292, GBW07293, GBW07294, GBW07101, GBW07102 and GBW07201 and the determined values were in good agreement with the certified values. The relative standard deviations (n?=?5) of Pt, Pd, Ru, Rh and Ir were between 3.42% and 6.87% for the determination of GBW07291.  相似文献   

20.
An analytical method for the determination of lanthanide elements in the bovine whole blood reference material (IAEA A-13) has been investigated by inductively coupled plasma mass spectrometry (ICP-MS). The bovine whole blood reference material was digested with HNO3 and HClO4, and then the pH of the digested solution was adjusted to 12 with 3 M sodium hydroxide aqueous solution. In this experimental procedure, lanthanide elements in the blood sample were coprecipitated with iron mainly derived from heme-iron in blood itself. In order to minimize matrix effects due to iron, excess iron in the analysis solution was removed by solvent extraction using methyl isobutyl ketone (MIBK) prior to the determination of lanthanide elements by ICP-MS. The recoveries of all lanthanide elements were almost quantitative in the recovery test. In consequence, it has been found that all lanthanide elements in bovine whole blood reference material are at the wide concentration range of 0.90 pg/g for Tm ∼1880 pg/g for Ce. Received: 2 May 1998 / Revised: 27 July 1998 / Accepted: 30 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号