首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金属催化的不对称氢化反应研究进展与展望   总被引:1,自引:0,他引:1  
谢建华  周其林 《化学学报》2012,70(13):1427-1438
手性过渡金属络合物催化的不对称氢化反应是合成光学活性化合物的重要方法. 本文从手性配体及手性催化剂、不对称催化新反应、新方法和新策略三个方面简要评述新世纪以来过渡金属催化的不对称氢化反应研究领域的新进展. 从新世纪初至今, 手性单磷配体得到了复兴, 出现了如MonoPhos、SiPhos、DpenPhos等高效单齿亚磷酰胺酯配体; 磷原子手性(P-手性)配体也得到了快速发展, 如BenzP*、ZhanPhos、TriFer等已成为新的高效手性双膦配体; 螺环骨架手性配体成为新世纪手性配体设计合成的亮点, 除了SiPhos、SIPHOX、SpinPHOX等高效手性螺环配体外, 手性螺环吡啶胺基磷配体SpiroPAP的铱催化剂成为目前最高效的分子催化剂. 不对称催化氢化新反应研究也取得了突破, 如非保护烯胺、杂芳环化合物及N-H亚胺的氢化等反应都实现了高对映选择性. 自组装手性催化剂、树枝状手性催化剂、铁磁性纳米负载的可回收手性催化剂, 以及“混合”配体手性催化剂等新方法和新策略也在不对称催化氢化反应中得到了应用. 然而, 手性过渡金属络合物催化的不对称氢化研究仍然充满挑战, 也期待新的突破.  相似文献   

2.
The design of new chiral ligands is the key in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands that have been reported, the atropisomeric C2-symmetric phosphines with a biaryl scaffold initiated by Noyori and co-workers with BINAP were found to have the widest application in the transition metal catalyze…  相似文献   

3.
The enantioselective reduction of prochiral ketones with borane in the presence of a chiral ligand leading to enantiomerically pure secondary alcohols has received considerable attention in recent years. [1] Enantiomerically pure secondary alcohols are important intermediates for the synthesis of various other organic compounds such as halides, esters, ethers, ketones and amines. To the best of our knowledge, the use of pyridine prolinol derivatives in the reduction of ketones has not been reported so far. Thus, it should be of interest to investigate the catalytic a bility of such ligands. We have an ongoing project in the synthesis and application of chiral pyridine derivatives in chiral molecular recognition[2] and we want to evaluate the effect resulting from the introduction of a pyridinyl moiety onto the catalysts. We expect that the cooperation of pyridine unit and chiral prolinol unit in new ligands may result in unique properties for catalytic reaction.  相似文献   

4.
Enantioenriched poly(hydroxy butyrate) (PHB) is a biodegradable polyester of significant commercial interest as an environmentally benign substitute of commodity polyolefines. We report on the design and development of new chiral indole-based ligand families and on their chromium(III) complexes as enantioselective catalysts for the conversion of propylene oxide and carbon monoxide to enantioenriched β-butyrolactone, the key monomer for the production of PHB by ring-opening polymerization. The enantioselective carbonylation catalysts are based on new chiral tri- and tetradentate [N2O] and [N4] chromium(III) complexes containing chiral indolaldimine ligand scaffolds. The conceptual design of these ligands is inspired by Jacobsen’s salicylaldimine lead structure; the key difference is an exchange of the salicyl-O-donor against an indole-N-donor, allowing additional structural diversity and stereoelectronic tuning by the indole substitution pattern. Synthetically, chiral indolealdimines are easily accessible from 7-formylindoles by standard Schiff base condensation with chiral amine building blocks; the 7-formylindoles in turn are synthesized from the corresponding 7-bromoindoles by the Rapoport synthesis, and the starting 7-bromoindoles are accessible from 2-bromoaniline by the classical Fischer indole synthesis. Three generations of chiral [N2O] and [N4] chromium(III) catalysts have been developed and evaluated in the enantioselective carbonylation of racemic propylene oxide with carbon monoxide using tetracarbonylcobaltate as the nucleophilic reagent for the insertion of carbon monoxide into the activated propylene oxide/chiral Lewis acid complex. The best catalyst out of 10 candidates showed at a temperature of 80 °C an activity of 37% conversion, 100% chemoselectivity, and 19% stereoselectivity.  相似文献   

5.
The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ) complex catalyst for the oxidative …  相似文献   

6.
Metal isocyanides have been used and studied by organometallic chemists for many years and, as a result, they have a rich and interesting chemistry. The nature of metal-free isocyanides and the methods of making isocyanide complexes, however, has resulted in the vast majority of studies to date being performed with structurally simple isocyanides. We report here a new approach to the synthesis of isocyanide ligands that involves the reaction of a metal carbonyl ligand with the anion of a phosphoramidate. As phosphoramidates can be synthesised in one step from amines, our method means that the structural diversity of readily available amines, particularly chiral amines, can now be incorporated into isocyanide ligands.  相似文献   

7.
《Tetrahedron: Asymmetry》1998,9(23):4135-4142
We report a facile two step synthesis of chiral ligands for bonding to transition metals. The ligands are easily prepared from trans-1,2-diaminocyclohexane by reaction with sulfonyl chlorides to give amino-sulfonamide compounds. These intermediates are then condensed with salicylaldehyde derivatives to provide sulfonamide/Schiff base compounds which represent a new class of chiral ligands.  相似文献   

8.
新型手性配体的设计合成是不对称催化研究的重要内容,其中手性胺膦配体因同时含有"软"的磷原子和"硬"的氮原子而具有丰富的配位化学性能和优秀的不对称诱导能力.本文总结了本研究组最近设计合成的手性环状胺膦配体的制备、表征及其在铁催化酮的不对称还原中的应用.手性1,2-环己二胺与双(2-甲酰基苯基)苯基膦通过[2+2]环缩合反应能够顺利获得手性22元环的亚胺膦配体21,该配体经Na BH4还原后生成大环胺膦配体22.利用手性大环胺膦配体22与Fe3(CO)12原位生成的催化体系,能够高活性、高对映选择性地实现包括杂环芳香酮在内50多种酮的不对称转移氢化和不对称氢化反应,其S/C(底物与催化剂的摩尔比)最高可达5000:1,产物手性芳香醇的光学纯度高达99%ee.  相似文献   

9.
苗晓  王来来 《分子催化》2014,(3):282-293
正手性过渡金属配合物催化的不对称氢化是合成手性药物、农药和精细化工中间体的重要方法.到目前为止,已经有一些过渡金属/配体配合物催化的不对称氢化反应得到工业化应用,典型的实例如孟山都公司采用手性双齿膦配体DIPAMP生产L  相似文献   

10.
The employment of enantioselective transition‐metal‐catalyzed transformations as key steps in asymmetric natural product syntheses have attracted considerable attention in recent years owing to their versatile synthetic utilities, mild conditions and high efficiency in chirality generation. The chiral catalysts or supporting ligands are believed to be crucial for the requisite reactivity and enantioselectivity. Therefore, the rational design of chiral ligands is at the heart of developing new asymmetric transition‐metal catalyzed reactions and provides an avenue to the asymmetric synthesis of natural products. Our group has been engaged in the development of transition‐metal‐catalyzed enantioselective cross‐coupling, cyclization and other related reactions and the application of these methodologies to natural product syntheses. In this account, we summarized our recent synthetic efforts towards the efficient total syntheses of several different types of natural products including terpenes, alkaloids and polyketides facilitated by the design of a series of versatile P‐chiral phosphorous ligands.  相似文献   

11.
The design and synthesis of three new C 2‐symmetric chiral diphosphoramidite ligands starting from simple and cheap building blocks have been developed. Rhodium(I) cationic complexes bearing these chelate ligands have been prepared and applied in asymmetric hydrogenation of model olefins. A rhodium complex with a diphosphoramidite containing a chiral diamine configurationally stable and two fluxional chiral biphenyl units gave higher enantioselectivity with increasing hydrogen pressure (87% ee) in the hydrogenation of dimethyl itaconate.  相似文献   

12.
We report the synthesis of new chiral monodentate phosphite ligands with a biphenyl backbone, the axial chirality of which is introduced early in the synthesis and locked by a chiral alkylenedioxy bridge. We also describe results obtained with these ligands in rhodium-catalysed asymmetric hydrogenation of various substrates.  相似文献   

13.
In recent years, N-heterocyclic carbenes (NHC) have proved to be a versatile class of spectator ligands in homogeneous catalysis. Being robust anchoring functions for late transition metals, their ligand donor capacity and their molecular shape is readily modified by variation of the substituents at the N-atoms and the structure of the cyclic backbone. After the first attempts to use chiral NHC ligands in asymmetric catalysis in the late 1990's, which initially met with limited success, several novel structural concepts have emerged during the past two years which have led literally to an explosion of the field. With a significant number of highly selective chiral catalysts based on chiral NHCs having been reported very recently, several general trends in the design of new NHC-containing molecular catalysts for stereoselective transformations in organic synthesis emerge.  相似文献   

14.
The optimization of asymmetric catalysts for enantioselective synthesis has conventionally revolved around the synthesis and screening of enantiopure ligands. In contrast, we have optimized an asymmetric reaction by modification of a series of achiral ligands. Thus, employing (S)-3,3'-diphenyl BINOL [(S)-Ph(2)-BINOL] and a series of achiral diimine and diamine activators in the asymmetric addition of alkyl groups to benzaldehyde, we have observed enantiomeric excesses between 96% (R) and 75% (S) of 1-phenyl-1-propanol. Some of the ligands examined have low-energy chiral conformations that can contribute to the chiral environment of the catalyst. These include achiral diimine ligands with meso backbones that adopt chiral conformations, achiral diimine ligands with backbones that become axially chiral on coordination to metal centers, achiral diamine ligands that form stereocenters on coordination to metal centers, and achiral diamine ligands with pendant groups that have axially chiral conformations. Additionally, we have structurally characterized (Ph(2)-BINOLate)Zn(diimine) and (Ph(2)-BINOLate)Zn(diamine) complexes and studied their solution behavior.  相似文献   

15.
The design and synthesis of chiral ligands plays an important role in asymmetric catalytic reactions. Over the past decades, various types of chiral phosphine-oxazolines (PHOX ligands) have been developed and have greatly advanced the field of asymmetric catalysis. Novel chiral PHOX ligand with an axis-unfixed biphenyl backbone, developed by our group, have shown interesting coordination behavior and excellent chiral inducing ability in various transition-metal-catalyzed asymmetric reactions. This personal account focuses on our developed axis-unfixed biphenylphosphine-oxazoline ligand (BiphPHOX), including an overview of its design and applications, which will provide inspiration for the exploration of novel ligands and related reactions.  相似文献   

16.
不对称催化氢甲酰化中高效手性配体的进展   总被引:2,自引:0,他引:2  
比较系统地总结了应用于不对称催化氢甲酰化方面各类配体的合成、设计思路及性能,侧重于评述高效配体的最新进展.  相似文献   

17.
糖类化合物价廉易得,具有天然手性结构,糖环上的多个羟基经过修饰,可以连接多种官能团。近年来手性糖类化合物的合成与应用研究引起了人们的广泛关注,尤其是在不对称合成和催化中的应用研究已成为有机化学中非常活跃的领域。碳水化合物含磷手性配体在不对称催化反应中的应用研究进展十分迅速,本文综述了近年来碳水化合物含磷手性配体与金属形成络合物作为催化剂,在不对称催化氢化、不对称烯丙位取代和不对称氢甲酰化等反应中的研究进展。  相似文献   

18.
An enantioselective sulfenylation/semipinacol rearrangement of 1,1‐disubstituted and trisubstituted allylic alcohols was accomplished with a chiral Lewis base and a chiral Brønsted acid as cocatalysts, generating various β‐arylthio ketones bearing an all‐carbon quaternary center in moderate to excellent yields and excellent enantioselectivities. These chiral arylthio ketone products are common intermediates with many applications, for example, in the design of new chiral catalysts/ligands and the total synthesis of natural products. Computational studies (DFT calculations) were carried out to explain the enantioselectivity and the role of the chiral Brønsted acid. Additionally, the synthetic utility of this method was exemplified by an enantioselective total synthesis of (?)‐herbertene and a one‐pot synthesis of a chiral sulfoxide and sulfone.  相似文献   

19.
20.
Various routes for the synthesis of polymer-bound phosphites and phosphoramidites have been investigated. In the presence of a suitable activator the supported phosphoramidites react cleanly with alcohols to give the corresponding monodentate phosphite ligands in solution. We have applied this novel solid-phase route in the parallel synthesis of several monodentate chiral and achiral phosphite ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号