首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method for the elements preconcentration on thin-layer paraffin-treated cellulose filters was proposed. It was found that pyrrolydinedithiocarbamates of As(III), Bi, Cd, Co, Cu, Fe(III), Ni, Pb, Se(IV), V(V) and Zn obtained after mixing of sample (3-5 ml min−1) and reagent (0.7-1.0 ml min−1) streams were quantitatively recovered from 100 ml sample. The sample acidity was adjusted to pH 4.8-5.2 for preconcentration of Cd, Co, Cu, Fe(III), Ni, Pb, V(V) and Zn, and to 2 M HCl for preconcentration of As, Bi and Se. The optimum reagent concentration was found to be 0.1%. The elements were determined on the filters by X-ray fluorescence spectrometry. The detection limits achieved were 0.1-4.0 μg of element on the filter. Relative standard deviation (R.S.D.) was not higher than 0.08 while determining 5-50 μg of elements on filter. Accuracy and precision of the technique proposed were evaluated by the analysis of spiked natural samples.  相似文献   

2.
N Lavi  Z B Alfassi 《The Analyst》1990,115(6):817-822
The concentrations of Cd, Co, Cr, Fe, Mo, Ni, Se, Ti, V and Zn in biological fluids, human blood serum and market milk were determined by neutron activation analysis, with enrichment by coprecipitation. The pre-concentration of these trace elements was accomplished by converting the dissolved trace metal ions into their pyrrolidinedithiocarbamate (1-pyrrolidinecarbodithioate) chelates, followed by coprecipitation with a metal carrier such as Ni, Pb or Bi. The coprecipitation was carried out prior to irradiation for the short-lived nuclides (V, Ti and Se) and after irradiation for the other elements. The validity of the method was checked using certified biological reference materials; the concentrations of trace elements found by the proposed method agreed well with the published certified data. The limits of detection for Cd, Co, Cr, Fe, Mo, Ni, Se (obtained through the long-lived isotope 75Se) and Zn under the present experimental conditions were found to be 5, 5, 10, 520, 5, 70, 10 and 150 ng, respectively, for 5 ml of biological liquor. The limits of detection for Ti and V obtained (through their short-lived radionuclides 51Ti and 52V, respectively) were found to be 180 and 1.4 ng, respectively, for 50 ml of market milk, or 70 and 0.7 ng for 1 ml of blood serum.  相似文献   

3.
Cheng F  Xianbao W  Wuming Z  Xingyao Z 《Talanta》1999,50(2):253-259
A chromatographic method for the determination of transition metals in human hair samples is described. The method involves the separation of Cu, Pb, Zn, Ni, Co, Cd and Mn in a C18 column coated with sodium hexadecane-sulfonate (SHS) and spectrophotometric detection (520 nm) after post-column reaction of the eluted metals with 4-(2-pyridylazo)-resorcinol (PAR). The eluent was a 100 mM tartrate solution adjusted to pH 3.1 with a 2 M sodium hydroxide solution (flow-rate=1.0 ml min(-1)). A good separation of the eluted metals (specially for Cu/Pb and Zn/Ni) has been achieved. The detection limits, expressed as mug l(-1), were 2.2 (Cu), 8.0 (Pb), 2.8 (Zn), 1.5 (Ni), 1.5 (Co), 12.0 (Cd), and 1.4 (Mn). A microwave-assisted closed vessel acid digestion procedure with HNO(3)+HClO(4) (4+1 ml) was used for the hair samples solubilisation. Nineteen hair samples were analysed with the proposed method. The results were in good agreement with those obtained by atomic absorption spectrometry (AAS).  相似文献   

4.
Ernst T  Popp R  van Eldik R 《Talanta》2000,53(2):347-357
Analytical data on element concentrations in plastics is an important prerequisite for the recycling of technical waste plastics. The chemical resistance and high additive contents of such materials place a high demand on analytical methods for quantifying elements in thermoplastics from electrotechnical applications. The applicability of three common independent analytical methods (EDXRF, AAS, ICP-AES) for the quantification of heavy metals in such technical waste plastics of varying composition was studied. Following specific sample pre-treatments, such as closed vessel microwave assisted digestion and wet ashing with H(2)SO(4), three hazardous metals (Pb, Cd, Sb) were determined. Conditions were investigated to minimize matrix effects for all analytical techniques employed. The trueness for the quantification of Cd was checked by using the certified reference material VDA 001-004 (40-400 mug g(-1) Cd in polyethylene), and no significant differences to certified values were found. The best detection limits were found to be 2, 1.3 and 7.9 mug g(-1) for Cd, Pb and Sb, respectively. In technical waste polymers, Sb was detected to be in the range 1-7%, Cd in the range 80-12 000 mug g(-1) and Pb in the range 90-700 mug g(-1). The precision reached for the analysis of this complex material, is comparable for all methods, and can be expressed by a relative standard deviation smaller than 8%. Application of multivariate analysis of variances (MANOVA) showed no differences between the mean results, except for the ICP-AES analysis following wet ashing with H(2)SO(4).  相似文献   

5.
Tewari PK  Singh AK 《Talanta》2001,53(4):823-833
A new chelating resin is prepared by coupling Amberlite XAD-2 with pyrocatechol through an azo spacer, characterized (by elemental analysis, IR and TGA) and studied for preconcentrating Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The sorption is quantitative in the pH range 3.0-6.5, whereas quantitative desorption occurs instantaneously with 2 M HCl or HNO(3) The sorption capacity has been found to be in the range 0.023-0.092 mmol g(-1) of resin. The loading half time (t(1/2)) is 1.4, 4.8, 1.6, 3.2, 2.3 and 1.8 min, respectively for Cd, Co, Cu, Fe, Ni and Zn. The tolerance limits of electrolytes NaCl, NaBr, NaNO(3), Na(2)SO(4) and Na(3)PO(4) in the sorption of all the six metal ions (0.2 mug ml(-1)) are reported. The Mg(II) and Ca(II) are tolerable with each of them (0.2 mug ml(-1)) up to a concentration level of 0.01-1.0 M. The enrichment factor has been found to be 200 except for Fe and Cu for which the values are 80 and 100, respectively. The lowest concentration of metal ion for quantitative recovery is 5, 10, 20, 25, 10 and 10 mug l(-1) for Cd, Co, Cu, Fe, Ni and Zn, respectively. The simultaneous determination of all these metal ions is possible and the method has been applied to determine all the six metal ions in tap and river water samples (RSD相似文献   

6.
Atanassova D  Stefanova V  Russeva E 《Talanta》1998,47(5):2655-1243
Sodium diethyldithiocarbamate in the presence of a weak oxidizing agent is used as a co-precipitative agent for the pre-concentration of Se, Cu, Pb, Zn, Fe, Co, Ni, Mn, Cr and Cd. A procedure was developed for ICP-AES determination of these elements after pre-concentration in river and waste water (an enrichment factor of 40). The recovery of all the elements tested for was more than 98%. The limits of determination (mg l−1) (10 S.D. blank) are 0.001 (Cu, Co, Cr, Mn), 0.0007 (Zn, Cd), 0.003 (Se), 0.004 (Fe), 0.007 (Ni), and 0.01 (Pb).  相似文献   

7.
Menegário AA  Packer AP  Giné MF 《The Analyst》2001,126(8):1363-1366
Trace elements in small sample volumes of saliva were determined by coupling a high efficiency direct injection nebulizer to inductively coupled plasma mass spectrometry and employing quantification by isotope dilution. Aliquots of 0.4 ml of human saliva were mixed with 0.1 ml of concentrated nitric acid and diluted to 2 ml with water. Sample solutions were spiked with an isotopic solution enriched in 135Ba, 112Cd, 65Cu, 206Pb and 66Zn. The amount of each isotope added to the samples and the measurement procedure were adjusted to attain precise analytical results calculated from the isotope ratios 135Ba/138Ba, 112Cd/114Cd, 65Cu/63Cu, 206Pb/208Pb and 66Zn/68Zn. Data acquisition for Ba, Cu and Zn isotopes was performed for a single sample injection of 50 microl and in another sample injection the Cd and Pb isotopes were measured. Concentrations ranging from 5.0 to 16 microg l(-1) for Ba, from 0.50 to 1.1 microg l(-1) for Cd, from 6.0 to 50 microg l(-1) for Cu, from 0.8 to 18.8 microg l(-1) for Pb and from 46.0 to 230 microg l(-1) for Zn were found in saliva samples. Detection limits of 0.11, 0.03, 0.40, 0.05 and 0.59 microg l(-1) were determined for Ba, Cd, Cu, Pb and Zn, respectively. The concentrations found by isotope dilution were in agreement with those of the completely digested samples quantified by external calibration. The direct analysis of 30 samples per hour was attained with the proposed procedure, avoiding time-consuming digestion steps, contamination risks and matrix effects.  相似文献   

8.
Summary A flow-system utilizing a miniature column packed with silica-immobilized 8-hydroxyquinoline (I-8-HOQ) was used for the preconcentration of Cd, Pb, Zn, Cu, Fe, Mn, Ni, and Co from seawater prior to their determination by graphite furnace atomic absorption spectrometry (GFAAS). Enrichment factors sufficient to permit the analysis of an open ocean seawater reference material using 50 ml sample volumes (100 ml for Co determinations) were obtained. Recoveries of the above elements from seawater averaged 93% (range 87–97%) with absolute blanks ranging between 0.04 ng (Ni) and 4.0 ng (Fe). Estimated detection limits for these elements vary from 0.2 ng l–1 (Co) to 40 ng l–1 (Fe) based on a 50 ml sample volume (100 ml for Co).
Bestimmung von Spurenmetallen in Meereswasser durch Graphitofen-AAS mit Anreicherung an Kieselgel-immobilisiertem 8-Hydroxychinolin in einem Durchflu\system
  相似文献   

9.
Acar O 《Talanta》2001,55(3):613-622
The electrothermal atomic absorption spectrometric determination of cadmium and lead in biological certified reference materials (CRMs) has been carried out by using NH(4)H(2)PO(4), Ni, Pd, Ni+NH(4)H(2)PO(4), Pd+NH(4)H(2)PO(4) and Ni+Pd+NH(4)H(2)PO(4) as chemical modifiers. A comprehensive comparison was made among the modifiers in 1% Triton X-100 plus 0.2% nitric acid as diluent and without modifier. Zeeman background correction and graphite tubes inserted with platforms were used. Comparison was made in terms of pyrolysis and atomization temperatures, atomization and background absorption profiles. Ni+Pd+NH(4)H(2)PO(4) modifier mixture was found to be preferable for the determination of Cd and Pb. Pyrolysis temperatures of analytes were increased up to 900 degrees C for Cd and 1250 degrees C for Pb by using Ni+Pd+NH(4)H(2)PO(4) in 1% Triton X-100 plus 0.2% nitric acid diluent solution. Biological CRMs were analyzed to verify the accuracy and precision of this method. Depending on the biological sample type, the percent recoveries were increased from 62 to 102% for Cd and from 58 to 106% for Pb by using the proposed modifier mixture. The detection limits of Cd and Pb were found to be 0.04, 0.92 mug l(-1), respectively.  相似文献   

10.
Willie SN  Tekgul H  Sturgeon RE 《Talanta》1998,47(2):439-445
A rapid and simple on-line method is described for the preconcentration of Mn, Co, Ni, Cu, Zn, Cd and Pb from sea water using 8-hydroxyquinoline immobilized onto silicone tubing (Sil-8-HQ) via the Mannich reaction. Recoveries between 35 and 95% and limits of detection in the ppt range were obtained using a 2 m long Sil-8-HQ tube with a sample flow rate of 1.0 ml min(-1). A tube could be subjected to sample loading and elution cycles over 200 times. The capacity was 1.5 and 1.3 mug cm(-2) for Cu and Mn, respectively. Cu, Cd, Co, Pb, Mn, Zn and Ni were determined in coastal and open ocean seawater using flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Good agreement with certified values for the certified reference materials NASS-4 and CASS-3 was demonstrated when quantitation was undertaken by the method of additions.  相似文献   

11.
A new chelating resin, 1-(2-pyridylazo)-2-naphthol (PAN) coated Amberlite XAD-1180 (AXAD-1180), was prepared and used for the preconcentration of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were pH 9.5 and 3 M HNO3, respectively. The sorption capacity of the resin was found to be 5.3 mg/g for Cd and 3.7 mg/g for Ni. The detection limits for Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) were 0.7, 10, 3.1, 29 and 0.8 μg/L, respectively. The effects of interfering ions for quantitative sorption of the metal ions were investigated. The preconcentration factors of the method were in the range of 10–30. The recoveries obtained were quantitative (≥95%). The standard reference material (GBW07605 Tea sample) was analysed for accuracy of the described method. The proposed method was successfully applied to the analysis of various water, urea fertilizer and tea samples. The article is published in the original.  相似文献   

12.
A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCI solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 x 10(-4) M). Finally, 1 x 10(-5) M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 x 10(-10) to 1.05 x 10(-9)M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.  相似文献   

13.
Ramesh A  Rama Mohan K  Seshaiah K 《Talanta》2002,57(2):243-252
Preconcentration of Cd(II), Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) in saline matrices on Amberlite XAD-4 resins coated with ammonium pyrrolidine dithiocarbamate (APDC) and piperidine dithiocarbamate (pipDTC) and subsequent determination by inductively coupled plasma atomic emission spectrometry were studied. Parameters such as effect of pH, effect of HNO(3) concentration on elution of metals from resin were studied. The results show that Amberlite XAD-4 coated with APDC was more efficient in the recovery of metal ions compared with Amberlite XAD-4 coated with pipDTC, in the concentration range of 0.1-200 mug l(-1), for 1 g of Amberlite XAD-4 coated resin. The detection limits for Cd(II), Cu(II), Mn(II), Ni(II), Pb(II), Zn(II) are 0.1, 0.4, 0.3, 0.4, 0.6, 0.5 mug l(-1), respectively, for resin coated with APDC and 0.7, 1.0, 0.8, 0.9, 1.7 and 1.2 mug l(-1) for resin coated with pipDTC. The effect of diverse ions on the determination of aforesaid metals was studied. The method was applied for the determination of trace metal ions in artificial sea water and natural water samples. The results were compared with extraction AAS method.  相似文献   

14.
Kummrow F  Silva FF  Kuno R  Souza AL  Oliveira PV 《Talanta》2008,75(1):246-252
The aim of this work is to propose a biomonitoring method for the simultaneous determination of Cd and Pb in whole blood by simultaneous electrothermal atomic absorption spectrometry for assessment of environmental levels. A volume of 200 microL of whole blood was diluted in 500 microL of 0.2% (wv(-1)) Triton) X-100+2.0% (vv(-1)) HNO3. Trichloroacetic acid was added for protein precipitation and the supernatant analyzed. A mixture of 250 microg W+200 microg Rh as permanent and 2.0% (wv(-1)) NH4H2PO4 as co-injected modifiers were used. Characteristic masses and limits of detections (n=20, 3s) for Cd and Pb were 1.26 and 33 pg and 0.026 microg L(-1) and 0.65 microg L(-1), respectively. Repeatability ranged from 1.8 to 6.8% for Cd and 1.2 to 1.7% for Pb. The trueness of method was checked by the analysis of three Reference Materials: Lyphocheck Whole Blood Metals Control level 1 and Seronorm Trace Elements in Whole Blood levels 1 and 2. The found concentrations presented no statistical differences at the 95% confidence level. Blood samples from 40 volunteers without occupational exposure were analyzed and the concentrations ranged from 0.13 to 0.71 microg L(-1) (0.32+/-0.19 microg L(-1)) for Cd and 9.3 to 56.7 microg L(-1) (25.1+/-10.8 microgL(-1)) for Pb.  相似文献   

15.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

16.
Sampling and analytical techniques used for determining trace metal concentrations in atmospheric precipitation waters collected in Hungary are presented. The results of the analyses are briefly discussed and special attention is devoted to chromium speciation. For the preconcentration of the trace metals a chelating cellulose, iminodiacetic acid ethylcellulose (IDAEC) microcolumn was used in a flow-injected system. Cd, Co, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn were determined by ICP-AES. In precipitation water the concentrations of the trace elements were in the 0.1-50 mug/l. range. The two forms of chromium, Cr(III) and Cr(VI) were separated using IDAEC and the anion exchanger diethylamine ethylcellulose, respectively. Cr was determined by GFAAS. In atmospheric precipitation the concentration of Cr(III) was in the range of 0.1-0.4 mug/l. while that of Cr(VI) in the range of 0.04-0.1 mug/l.  相似文献   

17.
We report on a new method for the dispersive liquid-liquid microextraction of Cd(II), Co(II), Pb(II) and Ni (II) from water samples prior to their simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on the injection of a ternary solvent system composed of appropriate quantities of extraction solvent (trichloroethylene), dispersive solvent (ethanol), and the chelating reagent 2-(2′-benzothiazolylazo)-p-cresol into the sample solution. The solution turns turbid immediately after injection, and the analytes are extracted into the droplets of the organic phase which was dried and dissolved in a mixture of Triton X-114, nitric acid, and ethanol. The metal ions in this mixture were quantified by ICP-OES. The detection limits under optimized conditions are 0.2, 0.3, 0.2 and 0.7?μg?L?1 for Cd(II), Co(II), Pb(II) and Ni(II), respectively. The enrichment factors were also calculated for Cd (13), Co (11), Pb (11) and Ni (8). The procedure was applied to the determination of cadmium, cobalt, lead and nickel in certified reference material (waterway sediment) and water samples.
Figure
A new method for the dispersive liquid-liquid microextraction of Cd(II), Co(II), Pb(II) and Ni(II) from water samples prior to their simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP OES) is presented. The procedure was applied to the determination of elements in samples of river and lake water.  相似文献   

18.
Uzun A  Soylak M  Elçi L 《Talanta》2001,54(1):197-202
A method for the preconcentration of Cu, Fe, Pb, Ni, Cd and Bi as their diethyldithiocarbamate chelates was proposed using a column filled with Amberlite XAD-4 resin. The retained analytes on the resin were recovered with a small volume of acetone. The metal ions in the effluent were determined by a flame atomic absorption spectrometer. Different factors including pH of sample solution, sample volume, amount of XAD-4 resin, amount of ligand, eluent volume and matrix effects for preconcentration were examined. The recoveries for the analytes under the optimum working conditions were higher than 95%. The relative standard deviations of the determinations were below 9%. The limits of detection (3 s, n=20) for analytes were found to be between 4 and 23 mug l(-1). The proposed method was applied to the analysis of some waste waters from the organized industrial region of Kayseri.  相似文献   

19.
A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the adsorption of Cu2+, Ni2+, Co2+ and Pb2+ on 4-propyl-2-thiouracil (PUT) loaded on activated carbon. The metals on the complexes are eluted using 5 mL 3 M HNO3 in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95%. The detection limits for Cu2+, Ni2+, Co2+ and Pb2+ were 1.6, 1.3, 1.2, 2.3 ng ml(-1), respectively. The method has been successfully applied for these metals content evaluation in some real samples including natural water samples.  相似文献   

20.
建立电感耦合等离子体质谱法同时测定金银花中铅、镉、铬、镍、铜、砷6种有毒元素含量。采用微波消解法进行前处理,以钪、铟、铋3种元素作为内标物,用电感耦合等离子体质谱法对50批金银花样品中铅、镉、铬、镍、铜、砷6种有毒元素含量进行测定,以内标法定量,并应用SPSS软件对测定值进行统计学分析。6种有毒元素的质量浓度在0~300μg/L范围内线性良好,相关系数均不小于0.9997。6种有毒元素的检出限为0.003~0.020 mg/kg,样品加标回收率为80.0%~111.0%,相对标准偏差为0.71%~3.82%(n=6)。50批金银花样品中共计有14批样品有毒元素含量超出2015年版《中华人民共和国药典》规定,超标率为28%。聚类分析将50批样品分为3大类。该方法操作简单,灵敏度高,专属性好,可准确快速地同时测定金银花中多种有毒元素含量,可作为中药材品质及安全性监管的技术手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号