首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用表面引发可逆加成-断裂链转移自由基聚合反应,在硅胶表面修饰了分子印迹高分子膜(MIP-silica)。以元素分析和氮吸附分析对修饰的分子印迹高分子膜进行了表征。与传统采用本体聚合合成的分子印迹高分子相比,MIP-silica具有更好的传质能力。本文合成的茶碱印迹MIP-silica可以作为选择性固相萃取材料从血清中富集、检测微量的茶碱,该法合成的MIP-silica还可用于高效液相色谱和毛细管电色谱等领域。  相似文献   

2.
The role of molecularly imprinted polymers (MIPs) is changing from academic to applied researches. Challenging problems about MIP will be more highlighted in applicable uses and solving these problems is vital. The controlled/“living” radical polymerization (CLRP) techniques are applicable to solve the challenging problems in MIPs. The “living” nature of CLRP helps to improve the heterogeneity of binding sites in MIPs as a main challenge where precise control over sizes, compositions, and surface functionalities is achieved. Among different techniques of CLRP, reversible addition-fragmentation chain transfer (RAFT) technique presents distinguished benefits such as compatibility and tolerance to a wide range of functional monomers and mild reaction conditions rather than other CLRP techniques. In this review, in order to obtain more insights into the potential benefits of RAFT polymerization in fabrication of nano and micro MIP networks, recent research in advanced MIP materials for different templates with improved morphology, efficiency, and binding capacities with respect to traditional free radical polymerization (FRP) will be discussed. MIPs prepared via RAFT method have advantages of MIPs as high performance molecular recognition devices and CLRP as controllable polymerization mechanism, simultaneously.  相似文献   

3.
<正>The triple-shelled hollow spheres with optical properties were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization.After removal the core templates of the poly(styrene),the hollow silica spheres were obtained.The coating process of poly(methyl methacrylate)(PMMA) on the hollow silica spheres surface via surface RAFT polymerization was performed subsequently.The polymers coated on the hollow spheres surfaces were end-functionalized by trithiocarbonate,and they were used as RAFT agent to proceed the chain extension polymerization using Tb complex as monomer.The samples were characterized by FT-IR,SEM and luminescence spectroscopy respectively.The results indicated that the triple-shelled hollow spheres had been prepared successfully and the average diameter of the hollow core was about 1μm.  相似文献   

4.
Chang L  Li Y  Chu J  Qi J  Li X 《Analytica chimica acta》2010,680(1-2):65-71
In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds.  相似文献   

5.
Polystyrene and poly(butyl acrylate) were grafted from silicon wafer surface by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Three RAFT agents were immobilized onto silicon wafer through their leaving/initiating groups (R group). Grafting polymerization of butyl acrylate (BA) and styrene (St) was then carried out from the immobilized RAFT agents. The immobilization of the RAFT agents and the subsequent grafting polymerization of St and BA were evaluated by ellipsometry and X‐ray photoelectron spectroscopy. It was found that type of monomer, structure of RAFT agent, and local RAFT concentration on the surface have dramatic influences on the thickness of grafted polymer layer. The grafting polymerization with more severe rate retardation effect yielded thinner polymer films on the silicon wafer. Selection of a RAFT agent with little rate retardation was critical in the grafting polymerization to achieve thick films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 970–978, 2008  相似文献   

6.
Reversible addition-fragmentation chain transfer (RAFT) polymerization of 2,3-dimethyl-1,3-butadiene (DMB) in solution and on the surface of silica nanoparticles was investigated and PDMB-grafted silica nanoparticles (PDMB-g-SiO2 NPs) with different chain densities and molecular weights were prepared. The kinetic studies of DMB polymerization mediated by silica anchored RAFT agents at different graft densities were investigated and compared to the polymerization mediated by the corresponding free RAFT agent. The PDMB-g-SiO2 NPs were cured to prepare rubbery films and obtain matrix-free nanocomposites, which exhibited a good dispersion of silica nanoparticles and improved mechanical properties compared to the unfilled crosslinked rubber. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 417–427  相似文献   

7.
The immobilization of reversible addition–fragmentation chain transfer (RAFT) agents on silica for surface‐initiated RAFT polymerizations (SI‐RAFT) via the Z‐group approach was studied systematically in dependence of the functionality of the RAFT‐agent anchor group. Monoalkoxy‐, dialkoxy‐, and trialkoxy silyl ether groups were incorporated into trithiocarbonate‐type RAFT agents and bound to planar silica surfaces as well as to silica nanoparticles. The immobilization efficiency and the structure of the bound RAFT‐agent film varied strongly in dependence of the used solvent (toluene vs. 1,2‐dimethoxyethane) and the anchor group functionality, as evidenced by atomic force microscopy, transmission electron microscopy, dynamic light scattering, and UV/Vis spectroscopy. Surface‐initiated RAFT polymerizations using functionalized silica nanoparticles revealed that grafted oligomers, which often occur in SI‐RAFT, are not formed within the crosslinked structures that originate from the immobilization, and that RAFT‐agent films that show less aggregation during the immobilization are more efficient during SI‐RAFT in terms of polymer grafting density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 103–113  相似文献   

8.
Silica–polystyrene core‐shell particles were successfully prepared by surface‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization of styrene monomer from the surfaces of the silica‐supported RAFT agents. Initially, macro‐RAFT agents were synthesized by RAFT polymerization of γ‐methacryloxypropyltrimethoxysilane (MPS) in the presence of chain transfer agents (CTAs). Immobilization of CTAs onto the silica surfaces was then performed by reacting silica with macro‐RAFT agents via a silane coupling. Grafting of polymer onto silica forms core‐shell nanostructures and shows a sharp contrast between silica core and polymer shell in the phase composition. The thickness of grafted‐polymer shell and the diameter of core‐shell particles increase with the increasing ratio of monomer to silica. A control experiment was carried out by conventional free radical emulsion copolymerization of MPS‐grafted silica and styrene under comparable conditions. The resulting data provide further insight into the chemical composition of grafted‐polymers that are grown from the silica surface through RAFT process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 467–484, 2009  相似文献   

9.
Superhydrophobic surfaces (SHS) find versatile applications as coatings due to their very high water‐repellency, self‐cleaning, and anti‐icing properties. This investigation describes the preparation of a SHS from surfactant‐free hybrid fluoropolymer latex. In this case, reversible addition‐fragmentation chain transfer (RAFT) polymerization was adopted to prepare a copolymer of 4‐vinyl pyridine (4VP) and vinyl triethoxysilane (VTES), where the pyridine units were quaternized to make the copolymer soluble in water. The copolymer was further used as a macro‐RAFT agent to polymerize 2,2,2‐trifluoroethyl methacrylate (TFEMA) in a surfactant‐free emulsion via polymerization‐induced self‐assembly (PISA). The macro‐RAFT agent contained a small amount of VTES as co‐monomer which was utilized to graft silica nanoparticles (SNPs) onto the P(TFEMA) spheres. The film prepared using the nanocomposite latex exhibited a nano‐structured surface as observed by SEM and AFM analyses. Surface modification of the film with fluorinated trichlorosilane produced an SHS with a water contact angle (WCA) of 151.5°. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 266–275  相似文献   

10.
Thermo- and pH-responsive polypropylene microporous membrane prepared by photoinduced reversible addition–fragmentation chain transfer (RAFT) graft copolymerization of acrylic acid and N-isopropyl acrylamide by using dibenzyltrithiocarbonate as a RAFT agent. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Results of ATR/FT-IR and XPS clearly indicated that poly(acrylic acid) (PAAc) and poly(N-isopropyl acrylamide) (PNIPAAm) were successfully grafted onto the membrane surface. The grafting chain length of PAAc on the membrane surface increased with the increase of UV irradiation time, and decreased with the increase of the concentration of chain transfer agent. The PAAc grafted membranes containing macro-chain transfer agents, or the living membrane surfaces were further functionalized via surface-initiated block copolymerization with N-isopropyl acrylamide in the presence of free radical initiator, 2,2′-azobisisobutyronitrile. It was found that PNIPAAm can be grafted onto the PAAc grafted membrane surface. The results demonstrated that polymerization of AAc and NIPAAm by the RAFT method could be accomplished under UV irradiation and the process possessing the living character. The PPMMs with PAAc and PNIPAAm grafting chains exhibited both pH- and temperature-dependent permeability to aqueous media.  相似文献   

11.
The preparation of well‐defined polyisoprene‐grafted silica nanoparticles (PIP‐g‐SiO2 NPs) was investigated. Surface initiated reversible addition fragmentation chain transfer (SI‐RAFT) polymerization was used to polymerize isoprene from the surface of 15 nm silica NPs. A high temperature stable trithiocarbonate RAFT agent was anchored onto the surface of particles with controllable graft densities. The polymerization of isoprene mediated by silica anchored RAFT with different densities were investigated and compared to the polymerization mediated by free RAFT agents. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI‐RAFT polymerization were also investigated. Using this technique, block copolymers of polyisoprene and polystyrene on the surface of silica particles were also prepared. The well‐defined synthesized PIP‐g‐SiO2 NPs were then mixed with a polyisoprene matrix which showed a good level of dispersion throughout the matrix. These tunable grafted particles have potential applications in the field of rubber nanocomposites. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1493–1501  相似文献   

12.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used to produce poly(methyl acrylate) (pMA) loops grafted onto silica nanoparticles using doubly anchored bifunctional RAFT agents 1,4‐bis(3′‐trimethoxysilylpropyltrithiocarbonylmethyl)benzene (Z‐group approach) and 1,6‐bis(o,p‐2′‐trimethoxysilylethylbenzyltrithiocarbonyl)hexane (R‐group approach) as mediators. In both cases, molecular weights of the resulting surface‐confined polymer loops increased with monomer conversion, whereas the grafting density was significantly higher in the case of the R‐group supported RAFT polymerization due to mechanistic differences of the RAFT process at the surface. This result was evident from thermogravimetric analysis and supported by scanning electron microscopy. Polymer loops with molecular weights up to 53,000 g mol?1 were accessible with polydispersities of about 2.0 without and 1.5 with the addition of free RAFT agent. UV signals of the detached pMA loops measured via size exclusion chromatography were shifted to higher molecular weights compared with the corresponding RI signals, indicating branching reactions caused by the close proximity of growing radicals and polymer at the surface of the silica nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7656–7666, 2008  相似文献   

13.
刘淑娟  敦惠娟  周峰  赵亮  刘霞  蒋生祥 《色谱》2002,20(5):432-435
 利用巯丙基修饰硅胶的自由基链转移反应 ,在硅胶表面原位引发自由基聚合 ,制备了聚甲基丙烯酸甲酯修饰的反相高效液相固定相。通过红外吸收光谱 (FTIR)、拉曼光谱、热失重 (TGA)和元素分析对该固定相进行了表征。该固定相对含氧芳香化合物、多环芳烃等均有良好的分离能力。  相似文献   

14.
Xu S  Li J  Chen L 《Talanta》2011,85(1):282-289
Controlled/living free radical polymerization (CLRP) has been accepted as an effective technique in preparation of polymers because of its inherent advantages over traditional free radical polymerization. In this work, reversible addition-fragmentation chain transfer (RAFT) polymerization, the ideal candidate for CLRP, was applied to prepare atrazine molecularly imprinted polymers (MIPs) by precipitation polymerization. The resultant RAFT-MIPs demonstrated uniform spherical shape with rough surface containing significant amounts of micropores, leading to an improvement in imprinting efficiency compared with that of the MIPs prepared by traditional precipitation polymerization (TR-MIPs). The maximum binding capacities of the RAFT-MIPs and TR-MIPs were 2.89 mg g−1 and 1.53 mg g−1, respectively. The recoveries ranging from 81.5% to 100.9% were achieved by one-step extraction by using RAFT-MIPs for preconcentration and selective separation of atrazine in spiked lettuce and corn samples. These results provided the possibility for the separation and enrichment of atrazine from complicated matrices by RAFT-MIPs.  相似文献   

15.
The silica–polyvinyl imidazole core–shell nanoparticles (silica/PVI NPs) with controlled shell thickness and narrow distribution size were fabricated via “grafting‐to” method. First, O‐ethyl xanthate terminated PVI with various chain lengths was produced via the reversible addition–fragmentation chain transfer (RAFT) polymerization using O‐ethyl‐S‐phenyl dithiocarbonate (EPDC) as RAFT agent. Next, three synthesized PVI of different molecular weights (3.4, 6.6, and 11 kg/mol) were successfully grafted to the methacrylate modified silica NPs from solution by radical mediated grafting‐to method. These core–shell NPs were then characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectrum measurements (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Polyvinyl imidazole molecular weight, reaction time, polymer concentration, and reaction temperature were all used to control the grafting reaction for PVI grafting densities and shell thicknesses. The highest grafting density obtained was close to 1.2 chains/nm2 and was achieved for 3.4 kg/mol PVI at 80°C. The prepared silica/PVINP displayed efficient antifouling properties and stability in concentrated sodium chloride aqueous solutions over a broad pH range for a period of at least 7 days. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
P(N-isopropylacrylamide)(PNIPAM)prepared by reversible addition fragmentation chain transfer(RAFT) polymerization exhibited gelation retardation.The intermediate before gelation was characterized and indicated the presence of branched or hyperbranched chains.The swelling behavior was investigated,and the gel by RAFT polymerization(RAFT gel)showed accelerated shrinking kinetics and higher swelling ratio comparing with conventional gels(CG).The study was extended to gels prepared by using 2-hydroxy-1-ethanethiol as chain transfer agent and by using low concentration solutions. The two systems also exhibited retardation effects and improved deswelling kinetics.The different swelling behaviors of these gels and CG could be attributed to the presence of dangling chains caused by gelation retardation.  相似文献   

17.
The synthesis of graft polymers via controlled polymerization techniques has enabled the facile modification of the surface properties of a variety of substrates. Three grafting methods are typically highlighted in the literature: grafting-to, grafting-from, and grafting-through. However, a fourth method exists when grafting is conducted using reversible addition-fragmentation chain transfer (RAFT) polymerization, which we refer to as transfer-to. Transfer-to differs from the other grafting strategies in the types of structural defects and impurities that arise during polymerization. This review addresses important considerations when conducting RAFT transfer-to, including RAFT chain transfer agent selection, monomer structure, and reaction conditions. In addition, we highlight key mechanistic differences between grafting-from and transfer-to and their effects on the structure and sample composition of the resulting graft polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2865–2876  相似文献   

18.
Firstly,we synthesized N-methacryloyl-histidine monomer and N-methacryloyl-histidine-Cu2+ complex(MAH-Cu2+).Then the molecular imprinting polymers(MIP) has been prepared by surface grafting on uniform polystyrene(PS) core using reversible addition-fragmentation transfer polymerization(RAFT) with MAH-Cu2+ as the functional monomer,methyl paraoxon as the template to simulate phosphodiesterase(PTE).Finally,we have investigated the catalytic hydrolytic activities of MIP and non-imprinting polymers(NIP) to the template methyl paraoxon and the template analogue ethyl paraoxon respectively by UV spectrophotometry.The results showed that the catalytic hydrolytic activity of MIP to the template methyl paraoxon was highest and the value of k is 8.67×10-5 mmol L-1 min-1,3.89-fold higher than MIP to the template analogue ethyl paraoxon,2.79-fold higher than NIP to the template methyl paraoxon.The KM,rm of MSP are also determined,and KM = 3.95×10-4mol/L,rm = 2.12μmol/ min.The MIP can be reused with only lose 7%of catalytic activity for four cycles.  相似文献   

19.
Reversible addition-fragmentation chain transfer (RAFT) polymerization was utilized to control the grafting of methyl methacrylate (MMA) and methyl acrylate (MA) from natural ramie fibers substrate. The hydroxyl groups of ramie fibers were first converted to 2-dithiobenzoyl isobutyrate as a RAFT chain transfer agent (CTA), which was further grafted with MMA or MA mediated by the RAFT polymerization in a presence of 2-(ethoxycarbonyl)prop-2-yl dithiobenzoate as a free chain transfer agent. Hydrophobic poly(MMA) or poly(MA) modified ramie fibers with contact angles greater than 130° were obtained. The modified ramie fibers were analyzed by gravimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and contact angle measurements. The results indicate that the polymer chains had indeed been grafted from the surface of the ramie fibers with an average 33% of the hydroxyl groups in the raw ramie fiber substituted by 2-bromoisobutyryl bromide and an average grafting ratio of 25% poly(MMA) or poly(MA) related to ramie fiber. The homopolymers formed in the copolymerization were also analyzed to estimate molecular weights and polydispersity indices of grafting chains from the surface of ramie fibers by size exclusion chromatography, which showed narrow polydispersity with the PDIs to be <1.32. This study provides a novel and feasible approach to the preparation of functional composite materials for utilizing the abundant natural ramie fiber cellulose resource.  相似文献   

20.
An ion‐exchanger with polyanionic molecular brushes was synthesized by a “grafting from” route based on “surface‐controlled reversible addition‐fragmentation chain transfer polymerization” (RAFT). The RAFT agent, PhC(S)SMgBr was covalently attached to monodisperse‐porous poly(dihydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(DHPM‐co‐EDM) particles 5.8 μm in size. The monomer, 3‐sulfopropyl methacrylate (SPM), was grafted from the surface of poly(DHPM‐co‐EDM) particles with an immobilized chain transfer agent by the proposed RAFT protocol. The degree of polymerization of SPM (i. e. the molecular length of the polyanionic ligand) on the particles was controlled by varying the molar ratio of monomer/RAFT agent. The particles carrying polyanionic molecular brushes with different lengths were tested as packing material in the separation of proteins by ion exchange chromatography. The columns packed with the particles carrying relatively longer polyanionic ligands exhibited higher separation efficiency in the separation of four proteins. Plate heights between 130–200 μm were obtained. The ion‐exchanger having poly‐(SPM) ligand with lower degree of polymerization provided better peak‐resolutions on applying a salt gradient with higher slope. The molecular length and the ion‐exchanger group content of polyionic ligand were adjusted by controlling the degree of polymerization and the grafting density, respectively. This property allowed control of the separation performance of the ion‐exchanger packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号