首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ternary BaO-TiO2-B2O3 glasses containing a large amount of TiO2 (20-40 mol%) are prepared, and their optical basicities (Λ), the formation, structural features and second-order optical nonlinearities of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are examined to develop new nonlinear optical materials. It is found that the glasses with high TiO2 contents of 30-40 mol% show large optical basicities of Λ=0.81-0.87, suggesting the high polarizabity of TiOn polyhedra (n=4-6) in the glasses. BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are found to be formed as main crystalline phases in the glasses. It is found that BaTi(BO3)2 crystals tend to orient at the surface of crystallized glasses. The new XRD pattern for the Ba3Ti3O6(BO3)2 phase is proposed through Rietvelt analysis. The second harmonic intensities of crystallized glasses were found to be 0.8 times as large as α-quartz powders, i.e., I2ω(sample)/I2ω(α-quartz)=0.8, for the sample with BaTi(BO3)2 crystals and to be I2ω(sample)/I2ω(α-quartz)=68 for the sample with Ba3Ti3O6(BO3)2 crystals. The Raman scattering spectra for these two crystalline phases are measured for the first time and their structural features are discussed.  相似文献   

2.
Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li2O-4.0Al2O3-68.6SiO2-3.0K2O-2.6B2O3-0.5P2O5-0.9TiO2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li2SiO3) is the first phase to c form followed by cristobalite (SiO2) and lithium disilicate (Li2Si2O5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li3PO4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li3PO4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO4 (M=B, Al or Ti) complexes. The presence of BO3 and BO4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO3) increases at the expense of tetrahedrally coordinated B (BO4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.  相似文献   

3.
The effect of replacing 20 mol% of GeO2 by TiO2 on the properties of potassium germanate glass was investigated. The structure and devitrification behaviour of glasses were studied by Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA) and X-ray diffraction (XRD). It was observed that potassium titanium germanate has a higher glass transition temperature and a higher thermal stability vs. crystallization. The presence of two exothermic peaks on the DTA curve of potassium germanate glass indicates the complex crystallization process. The XRD pattern of this glass heated at the temperature of the first crystallization peak indicated that the GeO2 and K2Ge7O15 were formed. Only the K2TiGe3O9 phase was identified, in a case when potassium titanium germanate glass was heated at the temperature of the crystallization peak.  相似文献   

4.
The nanocrystallization behavior of 25K2O−25Nb2O5-(50−x)GeO2-xSiO2 glasses with x=0,25,and50 (i.e., KNb(Ge,Si)O5 glasses) and the chemical etching behavior of transparent nanocrystallized glass fibers have been examined. All glasses show nanocrystallization, and the degree of transparency of the glasses studied depends on the heat treatment temperature. Transparent nanocrystallized glasses can be obtained if the glasses are heat treated at the first crystallization peak temperature. Transparent nanocrystallized glass fibers with a diameter of about 100 μm in 25K2O-25Nb2O5-50GeO2 are fabricated, and fibers with sharpened tips (e.g., the taper length is about 450 μm and the tip angle is about 12°) are obtained using a meniscus chemical etching method, in which etching solutions of 10 wt%-HF/hexane and 10 M-NaOH/hexane are used. Although the tip (aperture size) has not a nanoscaled size, the present study suggests that KNb(Ge,Si)O5 nanocrystallized glass fibers have a potential for new near-field optical fiber probes with high refractive indices of around n=1.8 and high dielectric constants of around ε=58 (1 kHz, room temperature).  相似文献   

5.
The structures of the oxyorthogermanate La2(GeO4)O and the apatite-structured La9.33(GeO4)6O2 have been refined from powder neutron diffraction data. La2(GeO4)O crystallizes in a monoclinic unit cell (P21/c) and is cation stoichiometric in contrast to previous reports. La9.33(GeO4)6O2 crystallizes in a hexagonal unit cell (P63/m) and the powder diffraction data show anisotropic peak broadening that is observed in electron diffraction patterns as incommensurate diffuse spots at hkq reciprocal planes (with q=1.6-1.7) and can be attributed to a correlated disorder in the “apatite channels”. This compound was doped up to a nominal composition close to M2La8(GeO4)6O2 with M=Ca, Sr, Ba. The dopant ions preferentially occupy the 4f sites as the number of La vacancies decreases. The measured ionic conductivity of La9.33(GeO4)6O2 is about 3 orders of magnitude larger than for La2(GeO4)O at high temperatures and decreases with increasing dopant content from the highest value of about 0.16 S cm−1 at 1160 K.  相似文献   

6.
The structure of barium-titanium-metaborate xBaO-xB2O3-yTiO2 (y=0%, 4%, 8%, 16% and x=50-y/2) amorphous and crystallized powders, obtained using a polymeric precursor method, was investigated by Ti and B K-edge X-ray absorption spectroscopy (XAS) and 11B-NMR high-resolution techniques. XANES study of amorphous samples shows that Ti4+ ions exist as [4]Ti species associated to [6]Ti and [5]Ti species in a practically equivalent amount. After crystallization, titanium environment is predominately composed by [6]Ti species. According to XANES results obtained at the B K-edge, the fraction of boron in tetrahedral sites ([4]B) reduces as the amount of TiO2 is increased from x=0% to 4%, with a consequent increase of boron in trigonal sites ([3]B). By a combination of 11B-NMR spin-echo and triple quantum magic angle spinning (3Q-MAS) techniques, the detailed borate speciation was determined as consisting in [4]B and two kind of trigonal sites, [3]BA and [3]BB, corresponding, respectively, to borates sharing three and two O atoms with other boron units. NMR results reveal not only the reduction in boron coordination also seen by XANES but also the simultaneous reduction in the condensation degree of trigonal units, when the Ti content is increased in the glass. In crystallized samples, β-BaB2O4 and BaTi(BO3)2 phases were identified and quantified by 11B-NMR.  相似文献   

7.
Some NiO-doped Bi2O3,La2O3-SrO-BaO-Nb2O5-B2O3 glasses giving the formation of strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 °C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 μm/s in 2NiO-4La2O3-16SrO-16BaO-32Nb2O5-30B2O3 glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni2+ ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.  相似文献   

8.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

9.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

10.
Oxyfluoride glasses with a small amount of NiO are prepared using a conventional melt quenching technique, and the spatially selected crystallization of LaF3 and CaF2 crystals is induced on the glass surface by irradiations of continuous wave lasers with a wavelength of λ=1064 or 1080 nm. Dots and lines including LaF3 crystals are patterned by heat-assisted (300 °C) laser irradiations (λ=1064 nm) with a power of P=1 W and an irradiation time of 10 s for dots and a scanning speed of S=5 μm/s for lines. Lines consisting of CaF2 crystals are also patterned in an ErF3-doped oxyfluoride glass by laser irradiations (λ=1080 nm) with a power of P=1.7 W and a scanning speed of S=2 μm/s, and the incorporation of Er3+ ions into CaF2 crystals is confirmed from micro-photoluminescence spectrum measurements. It is proposed that the lines patterned by laser irradiations in this study are consisted of the composite of LaF3 or CaF2 nanocrystals and SiO2-based oxide glassy phase. It is demonstrated that a combination of Ni2+-dopings and laser irradiations is effective in spatially selected local crystallizations of fluorides in oxyfluoride glasses.  相似文献   

11.
The effect of B2O3 addition on the crystallization of amorphous TiO2-ZrO2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO2-ZrO2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO2-ZrO2 into a crystalline ZrTiO4 compound, while a larger amount of boria (?8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO4 units delay, while a build-up of trigonal BO3 promote, the crystallization of amorphous TiO2-ZrO2 to form ZrTiO4 crystals.  相似文献   

12.
The structure of orthorhombic rare earth titanates of La2TiO5 and Nd2TiO5, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a×b×2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO5 polyhedra remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.  相似文献   

13.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

14.
以TiO2为基体,在聚苯乙烯(PS)胶球和EO20PO70EO20(P123)两种模板剂作用下通过溶胶-凝胶及煅烧后处理方法制备了三维有序大孔纳米复合材料Bi2O3/TiO2.经傅里叶变换红外(FT-IR)光谱、X-射线衍射(XRD)、等离子体原子发射光谱(ICP-AES)、紫外-可见漫反射吸收光谱(UV-Vis DRS)、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和N2吸附-脱附等物理测试手段对其组成、结构、形貌及表面物理化学性能进行了表征.结果表明,该复合材料晶型结构良好,孔结构排列整齐有序,孔壁呈介孔结构,属于三维有序大孔材料(3DOM).与TiO2相比,3DOM-Bi2O3/TiO2对光的吸收至少红移60 nm,且红移至可见区.在紫外光、可见光以及微波辅助等多模式光催化降解结晶紫的实验中,复合材料3DOM-Bi2O3/TiO2表现出良好的光催化活性,其活性明显高于P25、Bi2O3和Bi2O3/TiO2.同时,该复合材料针对不同类型的染料均表现出较好的紫外光降解效果,且3次循环实验后,依旧保持较高活性.  相似文献   

15.
王挺  吴礼光  蒋新 《无机化学学报》2011,27(8):1477-1482
利用吸附相反应技术制备得到了掺杂不同浓度的Fe2O3的TiO2复合光催化剂。通过透射电子显微镜(TEM)、紫外可见光谱和X射线衍射(XRD)研究不同掺杂浓度对TiO2形貌和结晶过程的影响,并利用3种波长光源下的甲基橙光降解实验考评了各个复合光催化剂的催化活性。结果表明,掺杂后复合光催化剂中Fe2O3分散性较好较均匀。在TiO2紫外可见吸收光谱中由于Fe2O3的掺杂而出现了红移,而且随着掺杂浓度增加红移越来越明显,复合光催化剂的禁带宽度也越来越小。在焙烧过程中无定形Fe2O3或Fe3+进入了TiO2的晶格结构,从而抑制了TiO2的结晶过程。半导体禁带宽度的减少以及TiO2结晶过程的抑制作用,都导致紫外光下复合光催化剂催化活性的降低。但Fe2O3的掺杂也使得复合光催化剂在可见光区出现了一定的光催化活性。  相似文献   

16.
综合ZnO-Al2O3-SiO2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho3+/Yb3+共掺以ZnAl2O4为主晶相的ZnO-Al2O3-GeO2-SiO2系玻璃陶瓷。因[GeO4]四面体和[SiO4]四面体都是玻璃网络形成体,讨论了GeO2取代SiO2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho3+/Yb3+掺杂比对样品上转换发光的影响,最终结果表明当Ho3+/Yb3+掺杂比为1:11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

17.
New complex phosphates of the general formula K2M0.5Ti1.5(PO4)3 (M=Mn, Co) have been obtained from the melting mixture of KPO3, K4P2O7, TiO2 and CoCO3·mCo(OH)2 or Mn(H2PO4)2 by means of a flux technique. The synthesized phosphates have been characterized by the single-crystal X-ray diffraction and the FTIR-spectroscopy. The compounds crystallize in the cubic system with the space group P213 and cell parameters a=9.9030(14) Å for K2Mn0.5Ti1.5(PO4)3 and a=9.8445(12) Å for K2Co0.5Ti1.5(PO4)3. Both phosphates are isostructural with the langbeinite mineral and contain four formula unit K2M0.5Ti1.5(PO4)3 per unit cell. The structure can be described using [M2(PO4)3] framework composed of two [MO6] octahedra interlinked via three [PO4] tetrahedra. The Curie-Weiss-type behavior is observed in the magnetic susceptibility.  相似文献   

18.
Ferroelastic β′-Gd2(MoO4)3, (GMO), crystals are formed through the crystallization of 21.25Gd2O3–63.75MoO3–15B2O3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50–500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called “self-powdering phenomenon during crystallization” in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO4)2− tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.  相似文献   

19.
采用超声化学法,以CaCl2与不同氟源(NaBF4、K2SiF6)在溶液中反应,制得了不同形貌的CaF2微米晶(立方体、花状、多面体)。用XRD、SEM及TEM对产物晶相及形貌进行了表征。XRD结果显示所有产物均为结晶良好的立方相CaF2。SEM及TEM结果表明由NaBF4制得的产物形貌为均匀的立方体微米晶,而由K2SiF6制得的产物为多面体。在添加配体Na2EDTA的情况下,由NaBF4得到的产物为纳米片组成的花状结构。本文详细讨论了氟源种类、反应物比例、配体等反应参数对产物CaF2形貌的影响,并提出了可能的反应机理。  相似文献   

20.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号