首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In sulfolane (tetramethylene sulfone), which is a good solvent for the primary product, levoglucosan, cellulose is pyrolyzed completely into soluble products without forming any char. Residues during pyrolysis in sulfolane at 200, 240 and 330 °C were obtained always as colorless non-carbonized substances. From the change in the crystallinity and crystallite size as compared with the ordinary pyrolysis, a heterogeneous mechanism is indicated for cellulose pyrolysis, starting from a molecule which is less stabilized due to lack of some intermolecular interactions.  相似文献   

2.
The influence of boric acid or phenylboronic acid on thermal conversion of levoglucosan in acidic sulfolane was studied. Although levoglucosan was converted to levoglucosenone, furfural and 5-hydroxymethyl furfural (total yield: 40 mol%) at 200 °C in sulfolane containing 0.1 wt% H2SO4, addition of boric acid enormously lowered the yields of these, and instead caused the formation of a stable complex in more than 70 mol% yield. Thus, boric acid substantially suppressed the acid-catalyzed dehydration and formation of furfurals from levoglucosan through complex formation. From the 1H NMR spectrum, the chemical structure of this complex was confirmed as -d-glucofuranose cyclic 1,2:3,5-bisborate, which was readily hydrolyzed quantitatively to glucose by the addition of water. Phenylboronic acid also exhibited similar influences.  相似文献   

3.
Microcrystalline cellulose (avicel) is treated in hot-compressed aprotic solvents,sulfolane and 1,4-dioxane,using a batch-type reaction system with a molten tin bath in a range from 290 to 390℃. The corresponding densities of the solvent are 0.25-1.26 g/cm3 and 0.21-1.03 g/cm3 for sulfolane and 1,4-dioxane,respectively. As a result,in both solvents,more than 90% of cellulose is found to be de-composed to the solvent-soluble portion in which levoglucosan is the main component with the high-est yield of about 35% on original cellulose basis. The decomposition rate to levoglucosan is,however,faster in sulfolane than in 1,4-dioxane,while levoglucosan is more stable in 1,4-dioxane. In addition,its yield is found to be solvent-density dependent to be highest around 0.4-0.5 g/cm3 for both solvents. To elucidate these decomposition behaviors,the results obtained in this study with aprotic solvents are compared with protic solvents such as water and methanol in previous works.  相似文献   

4.
There has been much interest in the utilization of biomass-derived fuels as substitutes for fossil fuels in meeting renewable energy requirements to reduce CO2 emissions. In this study, the pyrolysis characteristics of biomass have been investigated using both a thermogravimetric analyzer coupled with a Fourier-transform infrared spectrometer (TG-FTIR) and an experimental pyrolyzer. Experiments have been conducted with the three major components of biomass, i.e. hemicellulose, cellulose, and lignin, and with four mixed biomass samples comprising different proportions of these. Product distributions in terms of char, bio-oil, and permanent gas are given, and the compositions of the bio-oil and gaseous products have been analysed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC). The TG results show that the thermal decomposition of levoglucosan is extended over a wider temperature range according to the interaction of hemicellulose or lignin upon the pyrolysis of cellulose; the formation of 2-furfural and acetic acid is enhanced by the presence of cellulose and lignin in the range 350-500 °C; and the amount of phenol, 2,6-dimethoxy is enhanced by the integrated influence of cellulose and hemicellulose. The components do not act independently during pyrolysis; the experimental results have shown that the interaction of cellulose and hemicellulose strongly promotes the formation of 2, 5-diethoxytetrahydrofuran and inhibits the formation of altrose and levoglucosan, while the presence of cellulose enhances the formation of hemicellulose-derived acetic acid and 2-furfural. Pyrolysis characteristics of biomass cannot be predicted through its composition in the main components.  相似文献   

5.
Activated carbons are produced from wastes of Algerian date stones by pyrolysis and physical activation in the presence of water vapor into a heated fixed-bed reactor. The effect of pyrolysis temperature and activation hold time on textural and chemical surface properties of raw date stones and carbon materials produced are studied. As expected, the percentage yield decreases with increase of activation temperature and hold time. The characterization of carbon materials is performed by scanning electron microscopy (SEM). X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption (BET). Results show the presence of cellulose and hemicellulose in the raw material, and the predominance of carbon and graphite after pyrolysis. Different oxygen-containing functional groups are found in the raw material while aromatic structures are developed after pyrolysis and activation. The best specific surface area (635 m2 g−1) and microporous volume (0.716 cm3 g−1) are obtained when the date stones are grinded, pyrolysed at 700 °C under a 100 cm3 min−1 nitrogen flow and then activated under water vapor at 700 °C for 6 h.  相似文献   

6.
生物质主要组分低温热解研究   总被引:21,自引:2,他引:19  
利用热重分析仪和裂解气质联用仪进行生物质主要组分低温热解特性研究。热重实验结果表明,生物质主要组分的热稳定性为:纤维素>木质素>半纤维素。半纤维素主要热解温度在210℃~320℃,而纤维素和木质素的主要热解温度分别在310℃~390℃和200℃~550℃。裂解气质联用实验考察不同温度对生物质主要组分低温热解产物的影响。半纤维素热解产物主要有乙酸、1-羟基-丙酮和1-羟基-2-丁酮,纤维素热解产物主要包括左旋葡聚糖和脱水纤维二糖,而木质素热解产物主要是邻甲氧基苯酚。  相似文献   

7.
The mass spectra of trimethylsilyl (TMS) derivatives of possible hydroxylated pyrolysis products of glucose and cellulose were recorded by gas chromatography/mass spectrometry (GC/MS) analyses of TMS derivatives of 2-hydroxymethylfuran, 2-hydroxy-1-methyl-1-cyclopenten-3-one, 5-(hydroxymethyl)-2-furaldehyde, 5-methyl-2-furoic acid, 4-hydroxy-6-methyl-(2H)-pyran-2-one, 2-methyl-3-hydroxy-(4H)-pyran-4-one (maltol) and 1,6-anhydro-beta-D-glucopyranose (levoglucosan, LG). Also, 2-O-TMS-1,6-anhydro-beta-D-glucopyranose, 4-O-TMS-1,6-anhydro-beta-D-glucopyranose and 2,4-bis-O-TMS-1,6-anhydro-beta-D-glucopyranose were identified from the interpretation of electron impact and chemical ionisation mass spectra of products obtained from partially silylated levoglucosan solutions, together with information from the known relative reactivities of OH groups of anhydrosugars. A peak at m/z 116 was found to be characteristic of the mass spectra of partially silylated anhydrosugars, and is absent from the mass spectra of the persilylated species. Pyrolysis/GC/MS of cellulose in the presence of hexamethyldisilazane afforded principally the 2- and 4-TMS ethers and the 2,4-bis-TMS ether of LG, whereas the 5-TMS-oxymethyl-2-furaldehyde was a prominent pyrolysis/silylation product of glucose. The mass spectra of other relevant pyrolysis/silylation products are presented.  相似文献   

8.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

9.
The effect of different mesoporous materials of the MCM-41 type on the pyrolytic behaviour of cellulose was evaluated by off-line analytical pyrolysis followed by GC–MS analysis of the evolved products trapped onto a XAD-2 resin. Siliceous MCM-41 (Si-MCM-41) and Me-MCM-41 catalysts containing different metals, namely Al, Mg, Ti, Sn or Zr, were synthesised and investigated utilising the same catalyst/cellulose mass ratio 1:3. The effect of the catalysts was evaluated by quantifying the yields of the following pyrolysis products: (2H)-furan-3-one, 2-furaldehyde, 5-methyl-2-furaldehyde, 4-hydroxy-5,6-dihydro-pyran-2-one, levoglucosenone, 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one (LAC), 1,4:3,6-dianhydro-α-d-glucose and levoglucosan. All the examined mesostructured solids decreased the yields of levoglucosan with respect to uncatalysed cellulose, and increased the production of levoglucosenone and LAC. The effect was higher with doped MCM-41 in comparison to Si-MCM-41. The formation of other pyrolysis products was less influenced by the catalyst. The activity of Sn-MCM-41 was further investigated by preparative pyrolysis with a fixed bed quartz reactor. This catalyst gave rise to a pyrolytic liquid enriched in LAC and depleted in levoglucosan, and could be re-used six times after regeneration without apparent loss of activity.  相似文献   

10.
Analytical pyrolysis combined with gas chromatography and mass spectrometry (Py-GC–MS) is a relatively rapid (1–3 h) method for the investigation of polymers. Various wood tissues from transgenic poplar clones and from control samples have been subjected to a screening test by Py-GC–MS. Pyrolysis products from lignin- and carbohydrate-derived pyrolysis products were subjected to multivariate principal component analysis (PCA). The first three PC accounting for 39–72% of the total variance in the original data set could be attributed to vinyl products from lignin and levoglucosan from cellulose. Samples with gene construct rbcs-rol C were only discriminated by plotting PC1 versus PC3 using the whole data set. However, the wood from trees containing gene construct 35 S-rol C were discriminated in all examined models indicating significant impacts during biosynthesis of the wood. One sample within the data set was further clustered because it turned out that this tree died off after two vegetation periods.  相似文献   

11.
The pyrolysis of purified celluloses in air at 251°C was studied. The pyrolysis was found to obey first-order kinetics, and the rate constants correlated with the crystallinities, orientations and accessibilities of the samples. The results are interpreted in terms of an oxygen-catalyzed decomposition, with the accessibility of oxygen to the cellulose determining the rate of pyrolysis. The production of levoglucosan under conditions approaching combustion was shown to be a function of the crystallinity and orientation of cellulose. Some levoglucosan appears to be produced from the less ordered regions.  相似文献   

12.
Pyrolysis-mass spectrometric studies of cellulose indicate low abundances of levoglucosan in the product spectrum compared to the yield values determined in more conventional types of pyrolysis studies. To examine the reason for these conflicting observation, levoglucosan was examined under different ion source conditions and ionization modes to ascertain the relative contributions of thermal degradation and ionization fragmention to the low abundances of the levoglucosan molecular ion. Low-energy electron ionization using conventional sample volatilization and molecular-beam sampling is compared to chemical ionization using methane, isobutane, and ammonia as reagent gases, and to field ionization and desorption. The mass spectrometric fragmentation patterns under the various systems indicate that studies of cellulose pyrolysis underestimate the amount of levoglucosan formed due to ionization fragmentation and thermal rearrangement reactions in the ion source. Several peaks, including m/z 126 and 144, are dominated by the contribution from the fragmentation of levoglucosan.  相似文献   

13.
Xu  Feixiang  Luo  Jiangchen  Jiang  Liqun  Zhao  Zengli 《Cellulose (London, England)》2022,29(3):1463-1472
Cellulose - In this research, the production of levoglucosan (LG) and levoglucosenone (LGO) was improved from acid-impregnated cellulose via fast pyrolysis. Thermogravimetric and kinetic analysis...  相似文献   

14.
钾元素对生物质主要组分热解特性的影响   总被引:1,自引:0,他引:1  
采用热重-红外联用仪对松木及生物质主要化学组分半纤维素、纤维素、木质素的热解特性及钾元素对其热解特性的影响进行了研究.结果表明,半纤维素、纤维素、木质素发生热解的主要温度分别为200~350 ℃、300~365 ℃和200~600 ℃;半纤维热解产物中CO、CO2较多;纤维素热解产物中LG和醛酮类化合物最多;木质素热解主要形成固体产物,气体中CH4相对含量较高.三种组分共热解过程中发生相互作用使热解温度提高、固体产物增加,气体中CO增加而CH4减少.添加K2CO3后半纤维素和纤维素热解温度区间向低温方向移动,固体产率提高.K对纤维素作用最明显,CO、CO2气体与固体产物产率明显增加,醛酮类和酸类物质的产率降低;木质素受K影响相对较小,热解固体产物略有增加,挥发分中H2O和羰基物质增加;三组分共热解减弱了钾元素的催化作用.  相似文献   

15.
李文惠  武红丽  黄婷  邓茹  曹飞  韦萍 《化学通报》2017,80(3):251-259
左旋葡聚糖(LGA)作为一种极具潜力的新糖源,既可以加酸水解为葡萄糖后间接用于微生物发酵,也可以被真菌或细菌甚至构造的基因工程菌直接代谢,目前已经在发酵上展现出良好的应用前景。此外,LGA还可作为碳源,生产生物乙醇、丁二酸等。目前制备LGA普遍采用生物质热解法,该方法存在能耗高、产率低、产物难以提取等缺点,应努力发展在溶剂体系中分解纤维素制备LGA的方法以提高产率。今后的研究应致力于开发微生物代谢LGA的新过程、新方法、新菌种,为LGA的高效利用提供坚实基础。  相似文献   

16.
Nanofibrillar cellulose aerogels   总被引:3,自引:0,他引:3  
Highly porous aerogels consisting of cellulose nanofibrils were prepared by dissolution/regeneration of cellulose in aq. calcium thiocyanate followed by regeneration and carefully controlled drying. The influence of drying method (regular freeze drying, rapid freeze drying, and solvent exchange drying) on resulting porosity was studied by electron microscopy and nitrogen adsorption. While regular freeze drying caused significant coalescence of microfibrillar units, solvent exchange drying gave highly porous aerogel composed of approx. 50 nm-wide cellulose microfibrils. Correspondingly, specific surface area of the solvent-exchange-dried aerogels ranged 160–190 m2/g, in contrast to 70–120 m2/g of regular freeze-dried materials. Rapid freeze technique using liquid nitrogen-cooled metal plate gave aerogel sheets with asymmetrical porosity, with the face contacted by copper having porous structure similar to those of solvent-exchange dried material.  相似文献   

17.
An intermediate product that was yellow, soluble, and solid was obtained in a high-radiation flash pyrolysis reactor. Under two different radiant heat fluxes, the yields tended to both increase initially until achieving a steady state, and then increase again with the progress of reaction. The compositional analysis of the yellow product was performed on high performance liquid chromatography (HPLC). It was indicated that the product mainly consisted of oligosaccharides, glucose, levoglucosan, methylglyoxal and so on. The compounds including oligosaccharides such as cellobiose and cellotriose, and monosaccharides such as glucose were regarded as active cellulose. Under the higher heat flux, the relative yield of the active cellulose increased initially, followed by a decreasing trend, and achieved a maximum mass fraction of 68% (w) in the soluble yellow product. The oligosaccharides with higher degree of polymerization (DP) were the primary components. Under the lower heat flux the yield of active cellulose was relatively lower, achieving a maximum of about 57% (w), and more saccharides with lower DP were contained. It was suggested that active cellulose was quite unstable at high temperature, and easily decomposed into saccharides with lower DP, even char, volatiles, and gaseous products. Finally an improved mechanism was proposed to describe the reaction route of formation and consequent evolution of active cellulose during cellulose pyrolysis.  相似文献   

18.
纤维素快速热裂解机理试验研究 Ⅱ. 机理分析   总被引:12,自引:12,他引:12  
针对在热辐射反应器上得到的纤维素热裂解实验结果,对左旋葡聚糖、1-羟基-2-丙酮以及乙醇醛等一次产物的生成机理进行了分析研究。在气相产物快速析出并急冷的条件下,乙醇醛和1-羟基-2-丙酮二种产物的生成与LG的生成呈现出竞争反应。基于这一结果,我们建立了竞争反应动力学模型,并分别对乙醇醛和1-羟基-2-丙酮进行了模拟,得出二种产物的生成具有相似的动力学行为,表明这两种竞争化合物具有相同的初始反应。分析认为,纤维素的热裂解通过活性纤维素这一反应前体以异裂和均裂两种热解途径进行分解,其中转糖基作用下糖苷键的异裂断开形成了包括LG以及其同分异构体的脱水糖;缩醛结构的开环以及环内C—C键的断裂形成乙醇醛、1-羟基-2-丙酮以及CO等其它小分子化合物。在Brodio-shafizadeh模型的基础上提出了反应机理模型,并按照该模型对高辐射源温度下纤维素热裂解LG的生成进行了模拟,计算结果与实验数据吻合较好。  相似文献   

19.
采用密度泛函理论UB3LYP/6-31G(d)方法,对模型化合物纤维二糖热解反应机理进行了量子化学理论计算研究。设计了三种可能的热解反应途径,对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化,计算了不同温度下热解反应的标准热力学和动力学参数。计算结果表明,糖苷键均裂而形成两个自由基中间体IM1a和IM1b,吸收热量为321.26kJ/mol,中间体IM1a经过渡态TS1a进一步形成左旋葡聚糖P1,反应势垒为202.72kJ/mol;与分步反应相比,纤维二糖经过渡态TS2协同反应直接形成左旋葡聚糖P1和吡喃葡萄糖P2的反应势垒低于分步反应的总势垒,其反应势垒为377.54kJ/mol;H+的加入有利于糖苷键的断裂,断裂形成的中间体IM3很难进一步反应形成左旋葡聚糖。  相似文献   

20.
This paper examines the polymerization of acrylonitrile to poly(acrylonitrile)(PAN), and its cyclization, in bulk form and using N,N-dimethylformamide (DMF) as solvent in which both monomer and polymer are soluble. Thermal analysis of the resultant products after polymerization has been performed by DSC and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Scanning electron microscopy has been used to study the morphology of the resultant products and after thermal treatments. The DSC thermal curve of PAN-DMF sample is quite different from the PAN bulk sample, showing a single sharp exothermic peak associated with nitrile group polymerization (cyclization) of PAN at lower temperature (240°C) than that of bulk PAN sample (314°C). Cyclization of PAN was confirmed by IR spectroscopy. It was found that the amide molecules are difficult to eliminate completely in the product obtained after the polymerization reaction, even after prolonged heating at 110°C, and remain occluded. The formation of a complex by dipolar bonding is also possible and it is discussed. It is concluded that the amount of heat evolved as well as the temperature interval over which it is released are influenced by the chemical processing of PAN when using DMF as solvent of both monomer and polymer. Pyrolysis of these PAN samples revealed the release of occluded molecules of DMF, and several compounds containing nitrogen produced from the thermal degradation processes. All these results are interesting to know the chemical processing of carbon fibres and activated carbon fibres from PAN modified precursors.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号