首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王豪杰  陈春  张海民  汪国忠  赵惠军 《催化学报》2018,39(10):1599-1607
生物质经催化转化合成燃料及化学品是当前研究的热点.目前,生物质的催化转化主要聚焦于纤维素、半纤维素和木质素的解聚及其下游产物合成.其中,乙酰丙酸(LA)作为纤维素解聚的主要产物之一,是一种极具竞争力的平台化合物和重要的生物质转化中间体.LA通过催化转化可以合成各类高附加值的化学品,例如,通过催化加氢LA可选择性合成γ-戊内酯(GVL).所合成的GVL用途广泛,可作为绿色溶剂、食品、燃料添加剂、(塑料、高分子、烃类或者其它高附加值化学品)前驱体等.目前,LA-to-GVL的研究主要着眼于非均相催化体系,包括负载型贵金属和非贵金属催化剂体.其中,贵金属催化剂主要有Ru,Au,Pd,Rh,Ir和Pt,虽然催化效率高,条件温和,但是成本高,难以实现工业化.此外对于广泛使用的Ru/C催化剂,存在金属-载体间相互作用不强.活性组分易流失、导致催化剂稳定性差等问题;而非贵金属则普遍存在催化活性不佳及反应条件苛刻等缺点.因此,开发高效、稳定、反应条件温和且具有工业化应用前景的非贵金属催化剂具有显著的研究意义,这也是当前的研究趋势.在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni3Fe双金属催化剂(Ni3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130oC和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180oC,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.  相似文献   

2.
生物质经催化转化合成燃料及化学品是当前研究的热点.目前,生物质的催化转化主要聚焦于纤维素、半纤维素和木质素的解聚及其下游产物合成.其中,乙酰丙酸(LA)作为纤维素解聚的主要产物之一,是一种极具竞争力的平台化合物和重要的生物质转化中间体.LA通过催化转化可以合成各类高附加值的化学品,例如,通过催化加氢LA可选择性合成γ-戊内酯(GVL).所合成的GVL用途广泛,可作为绿色溶剂、食品、燃料添加剂、(塑料、高分子、烃类或者其它高附加值化学品)前驱体等.目前,LA-to-GVL的研究主要着眼于非均相催化体系,包括负载型贵金属和非贵金属催化剂体.其中,贵金属催化剂主要有Ru,Au,Pd,Rh,Ir和Pt,虽然催化效率高,条件温和,但是成本高,难以实现工业化.此外对于广泛使用的Ru/C催化剂,存在金属-载体间相互作用不强.活性组分易流失、导致催化剂稳定性差等问题;而非贵金属则普遍存在催化活性不佳及反应条件苛刻等缺点.因此,开发高效、稳定、反应条件温和且具有工业化应用前景的非贵金属催化剂具有显著的研究意义,这也是当前的研究趋势.在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni_3Fe双金属催化剂(Ni_3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130℃和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180℃,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni_3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.  相似文献   

3.
生物质是一类可再生的能源物质,具有替代化石能源的潜力。乙酰丙酸(LA)和γ-戊内酯(GVL)被认为是重要的生物质平台化合物,LA可由生物质简单处理获得,目前GVL多由LA选择性还原而获得。本文综述了LA还原合成GVL的研究进展,重点从不同氢源(H_2、HCOOH、醇类化合物)出发,通过催化体系的差异,探讨了由LA选择性加氢还原生成GVL的反应机理、反应途径和进展。参考文献47篇。  相似文献   

4.
以金鸡纳碱衍生物作为手性修饰剂, 研究了三苯基膦稳定的Ir/SiO2催化剂催化芳香酮多相不对称加氢. 通过电感耦合等离子体原子发射发谱(ICP-AES)、高分辨透射电镜(HRTEM)、X 射线光电子能谱(XPS)、Brunauer-Emmett-Teller (BET)比表面积测试等固体表面分析手段对负载铱催化体系进行了表征; 利用红外(IR)光谱、固体核磁共振(NMR)等分析手段初步表征了负载铱多相催化体系中手性修饰剂-金属-稳定剂在载体上的相互作用; 利用“均相与多相催化体系的对比”、“催化剂稳定性实验”、“汞中毒实验”等方法阐明了手性修饰的负载铱催化体系是多相催化体系. 还考察了稳定剂种类、修饰剂种类、金属负载量、溶剂、碱添加剂种类等因素对不对称加氢反应的影响. 结果表明, 金鸡纳碱衍生物对Ir/SiO2催化剂具有较好的修饰作用, 在优化反应条件下苯乙酮及其衍生物加氢反应的对映选择性为52%-96%, 4-乙酰基吡啶、2-乙酰基噻吩及2-乙酰基呋喃加氢反应的对映选择性可分别达到74%、75%及63%.  相似文献   

5.
用乙二醇还原法制备了碳纳米管(CNT)负载的铂催化剂(Pt/CNT).考察了CNT化学修饰与物理修饰对催化剂的影响.CNT化学修饰采用H2SO4-HNO3氧化法,物理修饰采用十二烷基硫酸钠(SDS)吸附法.用X射线衍射、透射电子显微镜、电感耦合等离子发射光谱、H2程序升温脱附、傅里叶变换红外光谱和元素分析对Pt/CNT催化剂进行了表征,并以邻氯硝基苯选择加氢为探针反应考察了Pt/CNT的催化性能.结果表明,化学修饰与物理修饰都能在CNT表面引入一定数量的活性位,有助于促进Pt异相成核,提高Pt的分散性,进而提高催化剂的活性.SDS在一定浓度下可形成特定结构的胶束,导致形成特定形貌的Pt纳米粒子.  相似文献   

6.
以二维金属-有机框架M-Co3O4为载体制备了具有高活性的Ir/M-Co3O4催化剂.采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)、 N2物理吸/脱附等方法对催化剂进行了表征,并研究了催化剂、温度、时间、溶剂等因素对香草醛加氢脱氧反应的影响.结果表明, Ir/M-Co3O4催化剂具有较好的普适性和稳定性,在香草醛加氢脱氧制备4-甲基愈创木酚(MMP)反应中表现出较高的活性和选择性,香草醛的转化率达100%, MMP的选择性不低于99%.  相似文献   

7.
以SiO2为载体采用分步浸渍法制备了Fe/Ir/SiO2催化剂,考察了助剂Fe对Ir/SiO2催化剂气相巴豆醛选择性加氢性能的影响.采用X射线粉末衍射(XRD)、CO化学吸附、H2-程序升温还原(H2-TPR)和拉曼光谱(Raman)等技术对催化剂进行了表征.结果表明,助剂Fe能有效提高Ir/SiO2催化剂的巴豆醛转化率和巴豆醇选择性.Fe含量为0.087%的0.087Fe/Ir/SiO2催化剂的反应性能最佳,反应进行9 h的巴豆醛转化率36.9%,巴豆醇选择性83%.随着催化剂CO吸附量的下降(Fe覆盖的增加),催化剂的转换频率(turn over frequency,TOF)明显增加,这表明Fe促进Ir/SiO2催化剂表面活性位的加氢活性.然而,Fe的掺杂使得Ir/SiO2催化剂存在明显的活性下降现象,归因于Fe导致Ir/SiO2催化剂表面积炭和CO中毒.  相似文献   

8.
采用水热法合成出单斜结构的β-AgVO3纳米棒和CNT/β-AgVO3光催化剂,在可见光模拟系统中以碘酸钾为电子捕获剂,检测氧气生成速率表征催化剂的光催化性能, 并借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见光漫反射吸收光谱(UV-Vis)等对催化剂粉体进行了表征.实验结果表明,CNT附着在β-AgVO3颗粒表面有利于光生电子的转移和光解水析氧反应.CNT/β-AgVO3催化剂较之纯β-AgVO3催化剂活性显著提高.当CNT附着量为1.5%时,析氧速率可稳定在250 μmol·g-1·h-1.  相似文献   

9.
采用改良的Bönnemann法合成了一系列Pt/C、Pt-Ir/C、Pt-SnO2/C 和Pt-Ir-SnO2/C 阳极电催化剂. 利用X射线衍射(XRD)、透射电子显微镜(TEM)以及X射线光电子能谱(XPS)对催化剂晶型结构、表面形貌、粒径尺寸和表面电子结构进行了表征. 运用线性扫描伏安(LSV)、循环伏安(CV)和电流密度-时间(j-t)曲线进行电化学测试, 研究了温度对乙醇电催化氧化活性的影响. XRD和TEM结果表明, Pt 纳米粒子均为面心立方结构且分散较均匀, 平均粒径为2-4 nm. 电化学结果表明, 上述催化剂随着温度的升高催化性能增强, 在相同条件下,Pt-Ir-SnO2/C 催化剂的催化活性最佳. 通过阿仑尼乌斯公式计算结果得知, Ir 和Sn 的协同作用可以降低Pt-Ir-SnO2/C 催化剂对乙醇氧化反应的活化能.  相似文献   

10.
采用TiN浸渍热分解法制备了低铱含量Ir0.08Ti0.92O2纳米粉体,再通过微波辅助制备Pt/Ir0.08Ti0.92O2催化剂,并与采用传统亚当斯法制备的IrO2和商品化Pt/C进行对比研究.利用X射线衍射(XRD)、透射电子显微镜(SEM)、X射线能量散射谱(EDS)和X射线光电子能谱(XPS)对产物进行了分析.结果表明,Ir0.08Ti0.92O2是一种纳米棒状金红石相固溶体,直径约15 nm,担载Pt粒度5~7 nm,其中本体Ir/Ti原子比为0.084∶0.916,表面Ir/Ti原子比为0.296∶0.704,表明Ir在表面发生富集.经稳态极化曲线和线性扫描伏安测试得到析氧反应的本征催化活性由高到低为Ir0.08Ti0.92O2>Pt/Ir0.08Ti0.92O2>IrO2,前两者性能相近;Pt/Ir0.08Ti0.92O2的氧还原反应活性低于Pt/C,需进一步优化载Pt粒度.研究结果表明,Ir0.08Ti0.92O2既是高效、低成本的析氧反应催化剂,也是高性能载体材料,这使Pt/Ir0.08Ti0.92O2作为双效催化剂在成本、催化性能和稳定性上具有更大优势,也可作为优异的析氢反应催化剂.  相似文献   

11.
以有机改性蛭石为载体,RuCl_3·xH_2O为活性组分前驱体,采用吸附-沉淀法制备催化剂Ru/有机改性蛭石(Ru/OV),将其用于乙酰丙酸甲酯(ML)催化加氢反应中。采用X射线衍射(XRD)、N_2物理吸附-脱附、透射电镜(TEM)、X射线光电子能谱(XPS)对催化剂进行表征。结合单因素和正交实验考察了反应温度、反应压力、反应时间对乙酰丙酸甲酯加氢效果的影响,在最佳工艺条件下乙酰丙酸甲酯的转化率达84%,γ-戊内酯(GVL)选择性达100%。经重复使用20次后,ML的转化率仍然保持在80%以上,GVL的选择性为100%。  相似文献   

12.
γ-戊内酯(GVL)在燃料和化学品上有着巨大的潜在利用价值,如何从生物质木质纤维素出发经济地制备GVL广受关注.目前已有大量的研究致力于利用不同氢源从乙酰丙酸及其酯类催化加氢制备GVL的催化体系.过去的数年里,外加氢气条件下的乙酰丙酸及其酯类加氢制备GVL已经得到了广泛的研究.考虑到液体醇使用和管理相比于氢气更为安全便捷,而且醇类如甲醇、乙醇都是可以从生物质制备的绿色环保的溶剂,利用醇类通过Meerwein-Ponndorf-Verley(MPV)还原作为生物质催化加氢过程中的的溶剂和氢供体已经引起了人们的浓厚兴趣.在脂肪醇中,甲醇的还原势能最高,在MPV还原里的效果不如其他醇,但可以通过甲醇重整制氢的方式来供氢.此外,乙酰丙酸甲酯(ML)可以通过甲醇中酸催化醇解碳水化合物制得,因此可以尝试将碳水化合物醇解制备ML;甲醇重整制氢以及ML加氢结合起来,从而省去繁琐且能耗较大的ML分离步骤.腐殖质的存在和固体催化剂在甲醇中的稳定性是上述两步法策略的最大挑战.本文通过草酸凝胶共沉淀法首次制备了(n)CuO_x-CaCO_3(n为Cu/Ca摩尔比)双功能催化剂,用于以甲醇为原位氢源,从生物质ML一锅制备GVL反应中.经筛选,(3/2)CuO_x-CaCO_3催化制备GVL的得率高达95.6%.利用各种表征手段分析了催化剂使用前后的组成和结构变化.结果显示,新制的CuO_x-CaCO_3催化剂中即可检测到Cu+的存在,且在使用过程中CaCO_3可以有效阻止二价铜在氢气氛围下被完全还原成单质铜.对于该体系中的ML加氢,亚铜有着比单质铜更佳的催化性能.循环实验表明,(3/2)CuO_x-CaCO_3至少可以连续稳定使用8次,其催化活性没有明显损失.此外,在纤维素醇解产物中存在腐殖质的情况下,(3/2)CuO_x-CaCO_3催化剂仍能够有效催化纤维素醇解得到的ML加氢制备GVL.因此可以利用这个高效廉价的催化剂开发一种便捷的一锅两步法从木质纤维素生物质制备GVL,即将酸催化的纤维素醇解、甲醇重整、ML在甲醇溶剂中加氢三者整合起来.  相似文献   

13.
乙酰丙酸是重要的生物质衍生物,通过多相双功能催化剂催化转化其制备γ-戊内酯(GVL)成为生物精炼领域的研究热点。本文综述了近年来贵金属以及非贵金属双功能催化剂催化乙酰丙酸及其酯直接加氢制备GVL,以及金属负载型、改性分子筛和混合金属氧化物等双功能催化剂催化乙酰丙酸及其酯转移加氢制备GVL。在双功能催化剂作用下,乙酰丙酸及其酯通过羰基加氢和后续内酯化反应两个过程生成GVL。本文详细研究了不同双功能催化剂中活性位点在反应路径中的重要性,讨论了不同双功能催化剂在乙酰丙酸加氢转化过程中存在的优势和问题,并对未来双功能催化剂的开发和GVL的合成进行展望。  相似文献   

14.
采用浸渍法制备了ZrO2为载体负载Ir的催化剂(Ir/ZrO2), 考察了催化剂的CH4催化燃烧性能. 采用X射线衍射(XRD), 拉曼光谱(Raman), X射线光电子能谱(XPS), 氢气程序升温还原(H2-TPR)等技术对催化剂的结构和Ir物种的存在形式进行了表征. 结果表明, Ir/ZrO2催化剂中Ir是以IrO2形式存在的, Ir/ZrO2催化剂的CH4燃烧表观活性随着Ir负载量的增加而提高, 并且催化剂表现出较高的催化活性和良好的反应稳定性. 在低Ir负载量(≤1%)时, CH4燃烧的转换频率(TOF)随着Ir粒子的增大而提高|然而高Ir负载量(≥1%)时, TOF随着Ir粒子的增大保持不变.  相似文献   

15.
生物质衍生物乙酰丙酸是生物质转化过程中重要的平台分子,对其进行催化加氢可以得到高附加值的产物,是连接生物质转化和石油化工的重要途径。本实验研究了无溶剂微波辅助热解法绿色制备负载型钌基催化剂,以Ru3(CO)12为金属前体,碳纳米管、椰壳活性炭和活性氧化铝为催化剂载体,该制备方法简单易操作,环保高效低能耗,不使用溶剂,避免了杂质的引入和对催化剂的污染,是一种新型负载型贵金属催化剂的制备方法。同样采取传统浸渍法制备Ru/γ-Al2O3-IM。在乙酰丙酸水相催化加氢反应中的催化活性顺序为Ru/ACRu/CNT≈Ru/FCNTRu/γ-Al2O3-M W≈Ru/γ-Al2O3-IM。比较不同反应溶液水、甲醇、乙醇、苯甲醚、环己烷和丙酮等对于乙酰丙酸催化加氢反应的影响,并通过考察反应温度、反应压力和反应物初始浓度等因素对加氢反应的影响,确定最佳实验条件为:反应温度为90℃,反应压力2.0 MPa,适宜反应物浓度为0.10 g/m L,产品GVL收率大于99%。  相似文献   

16.
FCC汽油选择性HDS催化剂的原位红外光谱研究   总被引:1,自引:1,他引:0  
采用器外预硫化法制备了碳纳米管(CNT)负载的硫化态Co-Mo-S选择性加氢脱硫催化剂.应用原位红外技术(in-situ IR)对选择性加氢脱硫催化剂(Co-Mo-S/CNT)的表面吸附烯烃特性和HDS过程进行了动态研究.原位红外光谱数据表明:1-辛烯在Co-Mo-S/CNT催化剂表面很容易发生加氢饱和,150℃时完全反应;二异丁烯较难加氢,340℃下归属于=C-H伸缩振动吸收峰的3081cm-1特征峰依然很明显;噻吩的特征峰在280℃左右完全消失,Co-Mo-S/CNT催化剂对二异丁烯和噻吩具有很高的选择性HDS活性,噻吩和二异丁烯在Co-Mo-S/CNT催化剂上的吸附发生在不同的活性位上,不存在相互影响.  相似文献   

17.
采用表面修饰技术将碳纳米管(CNT)表面羧基化, 通过羧基将钨离子基团修饰到碳纳米管的外表面, 再通过高温焙烧处理将钨离子基团氧化成WO3, 成功合成了纳米WO3/CNT复合物, 进一步还原Pt 的前驱体而得到Pt-WO3/CNT复合催化剂. 采用X射线粉末衍射(XRD)和透射电镜(TEM)对样品的形貌和晶型结构进行了表征, 结果表明, Pt纳米粒子为面心立方晶体结构, 均匀地分布在WO3修饰的碳纳米管表面. 采用循环伏安(CV)和计时电流法研究了在酸性溶液中Pt-WO3/CNT催化剂对甲醇的电催化氧化活性, 结果表明WO3修饰的碳纳米管载铂催化剂比用混酸处理的碳纳米管载铂催化剂对甲醇呈现出更高的电催化氧化活性和更好的稳定性.  相似文献   

18.
生物质衍生物乙酰丙酸是生物质转化过程中重要的平台分子,对其进行催化加氢可以得到高附加值的产物,是连接生物质转化和石油化工的重要途径。本实验研究了无溶剂微波辅助热解法绿色制备负载型钌基催化剂,以Ru3(CO)12为金属前体,碳纳米管、椰壳活性炭和活性氧化铝为催化剂载体,该制备方法简单易操作,环保高效低能耗,不使用溶剂,避免了杂质的引入和对催化剂的污染,是一种新型负载型贵金属催化剂的制备方法。同样采取传统浸渍法制备Ru/γ-Al2O3-IM。在乙酰丙酸水相催化加氢反应中的催化活性顺序为Ru/AC > Ru/CNT ≈ Ru/FCNT > Ru/γ-Al2O3-MW ≈ Ru/γ-Al2O3-IM。比较不同反应溶液水、甲醇、乙醇、苯甲醚、环己烷和丙酮等对于乙酰丙酸催化加氢反应的影响,并通过考察反应温度、反应压力和反应物初始浓度等因素对加氢反应的影响,确定最佳实验条件为:反应温度为90℃,反应压力2.0 MPa,适宜反应物浓度为0.10 g/mL,产品GVL收率大于99%。  相似文献   

19.
采用共沉淀法制备了一系列不同Mn含量的纳米Ru-Mn催化剂,考察了纳米ZrO2作分散剂时它们催化苯选择加氢制环己烯的反应性能,并采用X射线衍射、透射电镜、N2物理吸附、X射线荧光、原子吸收光谱和俄歇电子能谱等手段对催化剂进行了表征.结果表明,Ru-Mn催化剂上Mn以Mn3O4存在于Ru的表面上.在加氢过程中,Mn3O4可以与浆液中ZnSO4发生化学反应生成一种难溶性的(Zn(OH)2)3(ZnSO4)(H2O)3盐.该盐易化学吸附在Ru催化剂表面上,从而在提高Ru催化剂上环己烯选择性起关键作用.当催化剂中Mn含量为5.4%时,环己烯收率为61.3%,同时具有良好的稳定性和重复使用性能.  相似文献   

20.
采用密度泛函理论研究了ZrO2负载的Ru基、Rh基以及Re改性的Rh基、Ir基催化剂上甘油氢解生成1,2-丙二醇和1,3-丙二醇的热力学过程, 重点考察了ReOx调变催化剂活性和选择性的作用机制. 结果表明, Ru/ZrO2和Rh/ZrO2催化剂上甘油分解经由脱水-加氢反应途径, 1,2-丙二醇的生成是热力学有利过程, 其中Ru基催化剂活性更高. 在Re修饰的Rh基和Ir基催化剂上, 反应遵循直接氢解机理, 其中金属表面解离的氢原子进攻ReOx团簇上与醇盐紧邻的C-O键是催化甘油转化为丙二醇最核心的步骤. ReOx-Rh/ZrO2催化剂上1,2-丙二醇为主要产物, 并伴随1,3-丙二醇的生成, ReOx的修饰则显著提高了Ir/ZrO2催化剂上1,3-丙二醇选择性. 与单金属催化剂上发生的间接氢解机理相比, 修饰催化剂上1,3-丙二醇选择性的提高可主要归因于Rh(Ir)-Re协同催化的直接氢解反应过程, 其中羟基化铼官能团有利于末端醇盐中间体的生成. ReOx-Ir/ZrO2催化剂上较大的Ir-Re团簇使得末端金属醇盐的立体优选性比次级醇盐更为突出, 从而具有最高的1,3-丙二醇选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号