首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在电场的作用下对石墨棒进行电化学剥离, 使其表面形成相互平行排列, 且垂直于石墨棒基底的二维(2D)石墨纳米片阵列(GNSA). 然后通过阴极还原电沉积法制备SnO2/石墨纳米片阵列(SnO2/GNSA)复合电极.采用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.电化学测试表明该复合电极具有优异的超电容性能, 在0.5 mol·L-1 LiNO3电解质中, 扫描速率为5 mV·s-1, 电位窗口为1.4 V时, 比电容达4015 F·m-2. 由SnO2/GNSA复合电极和相同电解质组装成的对称型超级电容器, 在扫描速率为5 mV·s-1时, 其电位窗口可增至1.8 V, 能量密度达到0.41 Wh·m-2, 循环5000 圈后其比电容仍保持为初始比电容的81%.  相似文献   

2.
通过电化学剥离法在石墨棒表面构筑了层数不等、彼此平行且垂直于基底的二维石墨纳米片(GNS)阵列, 而后采用阴极还原电沉积法在GNSs 表面均匀地包覆了一层氧化钌(RuO2·xH2O)薄膜, 形成了RuO2·xH2O/GNS 复合阵列电极. 电化学测试表明, RuO2·xH2O/GNS 复合阵列电极具有优良的超电容性能, 在0.5mol·L-1 H2SO4电解质溶液中, 扫描速率为5 mV·s-1, 电位窗口为0.9 V时, 其比电容高达4226 F·m-2, 并且具有优异的循环性能, 经过20000圈充放电循环后, 电容保持率高达94.18%.  相似文献   

3.
用恒电位法制成以9,10-蒽醌-2-磺酸钠盐(AQS)为掺杂阴离子的导电聚吡咯(PPy)电化学电容器电极材料,并采用循环伏安(CV)、充放电测试、电化学阻抗(EIS)等方法表征电容性质.结果表明,与高氯酸阴离子(ClO4-)掺杂的PPy相比,PPy/AQS电极材料不仅单位质量电容和电极稳定性得到提高,工作电压范围也得以扩大.在1mol·L-1的氯化钾中,工作电压为-0.6至0.6V,扫描速率为50mV·s-1时其单位质量电容达到491F·g-1,比PPy/ClO4-电极材料提高1.5倍.这是由于AQS自身良好的氧化还原活性和AQS掺杂有利于聚吡咯膜形成疏松多孔的纳米及亚微米颗粒结构而导致的.  相似文献   

4.
采用直流电弧等离子体喷射化学气相沉积法把石墨烯生长在钛(Ti)基底上,并采用电化学氧化聚合法在石墨烯表面沉积聚3,4-乙烯二氧噻吩(PEDOT),由此构造PEDOT/石墨烯/Ti电极。形貌及结构表征结果表明,电聚合200圈以上的PEDOT呈线状或泡沫状且均匀分布于石墨烯表面。电化学性能测试结果表明,PEDOT/石墨烯/Ti电极具有高的比电容和库伦效率;其电聚合次数为400圈时,与PEDOT/Ti电极相比,比电容提高42倍,其最大电势窗口可达1.4 V,而在0~1.2 V电势窗口范围内,扫描速度为10 mV·s-1时,比电容可达到269.6 mF·cm-2。  相似文献   

5.
利用复合共沉积法,在涂有中间层SnO2-Sb2O5的Ti基体上制备了PbO2+nano-WO3复合电极材料.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和双电层电容法等对复合电极表面的组成、结构、形貌及有效电化学面积进行测试.结果表明,随着纳米WO3掺杂量逐渐增大,复合电极的表面粗糙度和孔隙率逐渐变大,电化学有效面积也随之增大;利用线性扫描及Tafel曲线等电化学测试方法研究了nano-WO3的掺杂对复合电极析氧活性的影响,结果表明,掺杂nano-WO3的复合电极较纯PbO2电极的析氧活性大幅提高,其起始析氧电位发生负移,析氧过电位下降,最大可降低近300 m V.  相似文献   

6.
以KMnO4、氧化石墨(GO)和硫酸为原料,在120℃水热条件下3 h成功合成了直径为10~20 nm,长度为300~400 nm的α-MnO2纳米棒。研究发现GO的引入降低了纳米棒的制备温度,缩短了反应时间。电化学测试结果表明,在1 mol.L-1Na2SO4中性水系电解液中,该纳米棒表现出良好的电容性能,当扫描速率分别为2 mV.s-1和5 mV.s-1时,比电容分别为276 F.g-1和240F.g-1;该纳米材料是一种潜在的电化学电容器电极材料。  相似文献   

7.
将采用改性Hummers法制备的氧化石墨烯与多壁碳纳米管(MWCNT)复合, 通过激光直写的方法制备了以棉织物(Cotton fabric, CF)为基底的石墨烯复合碳纳米管的同心圆形织物柔性平面超级电容器(RGO/MWCNT/CF). 通过扫描电子显微镜、 X 射线衍射和拉曼光谱技术对RGO/MWCNT/CF进行了表征, 并对超级电容器的电导率和电化学性能进行了测试. 结果表明, 电极材料经激光还原后导电率达到了7.19×10 4 S/m, 表现出良好的导电性能. 以RGO/MWCNT/CF为工作电极、 PVA/LiCl凝胶为电解质组装的超级电容器具有良好的电化学性能, 在电位窗口为0~1 V、 电流密度为40.8 mA/cm 2时比电容达到24 mF/cm 2, 功率密度为61 mW·h/kg, 能量密度为1.22 mW·h/kg, 且循环1000次仍能保持92%的比电容.  相似文献   

8.
低热固相法制备纳米MnO2/CNT超电容复合电极的循环稳定性   总被引:1,自引:0,他引:1  
为了改善纳米MnO2超级电容器电极的充放电循环稳定性,以Mn(OAc)2·4H2O、NH4HCO3和碳纳米管(CNT)为原料,采用低热固相反应得到前驱体,再经焙烧和酸处理,制备了一系列CNT含量不同的纳米MnO2/CNT复合电极材料,并用X射线衍射(XRD)、透射电镜(TEM)和Brunauer-Emmett-Teller(BET)比表面积测定方法对其进行了表征.XRD分析结果表明,复合材料中的MnO2为纳米γ-MnO2.研究了复合电极在1 mol·L-1 LiOH电解质中的电化学性能,并与不含CNT的纯纳米MnO2电极进行了比较.结果表明,含CNTs为10%(w,质最分数,下同)和20%的MnO2/CNT复合电极的循环稳定性远优于纯纳米MnO2电极的循环稳定性,其中含10%CNTs的MnO2/CNT复合电极不仪具有良好的循环稳定性,而且在1000 mA·g-1高倍率充放电条件下仍具有200 F·g-1的高比电容.  相似文献   

9.
通过电化学聚合法制备了碳纤维布载三维网状聚苯胺电极,采用扫描电子显微镜、傅里叶红外光谱仪和X射线光电子能谱仪观察了电极形貌,并分析了电极表面特征基团。 接着,对比研究了该电极在4种RCl(R=H,Li,Na,K)水溶液中的电容性能。 电化学测试表明,在KCl中的电势窗口(1.8 V)大于在HCl和LiCl中的电势窗口,且在KCl中的比电容(501 F/g@0.5 A/g)远远大于NaCl中的比电容;即使在10 A/g的充放电电流下,电极在KCl溶液中的能量密度仍高于HCl溶液中2.0 A/g下的能量密度,因此KCl为聚苯胺基电容器最佳的电解质类型。 本文通过简单地改变水系溶液中电解质的种类,即可达到拓宽电势窗口、显著提升电化学电容器能量密度的目的,避免了使用有机溶液带来的物理化学稳定性差、污染环境的问题。  相似文献   

10.
通过水热法在碳布基底上生长了氢氧化镍纳米片陈列[Ni(OH)2NAs/CC],并以其为前驱物,合成了Ni3N NAs/CC纳米片阵列,构建了无需黏结剂的三维自支撑电极.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等对复合电极表面的结构、组成和形貌进行了测试和表征.结果表明,与Ni(OH)2NAs/CC相比,Ni3N NAs/CC电极表面粗糙度和孔隙率变大,电化学有效面积增加;线性扫描及Tafel曲线等电化学测试结果表明,Ni3N NAs/CC电极的析氧活性大幅提高,析氧电位下降可达280 m V,且表现出了良好的稳定性.  相似文献   

11.
基于微波水热法和微乳液法合成SnO2/TiO2纳米管复合光催化剂.通过X射线衍射(XRD)、配有能量色散X射线光谱仪(EDX)的透射电镜(TEM)和电化学手段对光催化剂进行表征.以甲苯为模型污染物,考察光催化剂在紫外光(UV)和真空远紫外光(VUV)下的性能及失活再生.结果表明,SnO2/TiO2纳米管复合光催化剂形成三元异质结(锐钛矿相TiO2(A-TiO2)/金红石相TiO2(R-TiO2)、A-TiO2/SnO2和R-TiO2/SnO2异质结),促使光生电子-空穴对的有效分离,提高光催化活性.SnO2/TiO2表现出最佳的光催化性能,UV和VUV条件下的甲苯降解率均达100%,CO2生成速率(k2)均为P25的3倍左右.但由于UV光照矿化能力不足,中间产物易在催化剂表面累积.随着UV光照时间的增加,SnO2/TiO2逐渐失活,20 h后k2由138.5 mg·m-3·h-1下降到76.1 mg·m-3·h-1.利用VUV再生失活的SnO2/TiO2,过程中产生的·OH、O2-·、O(1D)、O(3P)、O3等活性物质可氧化吸附于催化剂活性位的难降解中间产物,使催化剂得以再生,12 h后k2恢复到143.6 mg·m-3·h-1.UV和VUV的协同效应使UV降解耦合VUV再生成为一种可持续的光催化降解污染物模式.  相似文献   

12.
采用热分解方法制备了4种电极钛基金属氧化物:Ti/SnO2+Sb2O3、Ti/SnO2+Sb2O3/SnO2+IrO2、Ti/SnO2+Sb2O3/SnO2+RuO2和Ti/SnO2+Sb2O3/SnO2+CeO2. X-射线衍射分析表明Ti/SnO2+Sb2O3/SnO2+CeO2电极的CeO2晶体结构完好,连续工作较长时间电极表面没有明显析氧. 使用该电极电解氧化氨氮模拟废水(降解2 h),氨氮模拟废水从高浓度(500 mg·L-1)降解为较低浓度(180 mg·L-1),降解效率可达64%,电解活性最佳.  相似文献   

13.
The synthesized lotus-stalk Bi4Ge3O12 utilized as binder-free anode for LIBs demonstrates excellent cycling performance. The synthesized lotus-stalk Bi4Ge3O12 is composed of nanosheets, which is contribute to outstanding lithium storage performance.  相似文献   

14.
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极。利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究。实验结果显示: Na2MoO4、半胱氨酸和GQDs的最佳原料配比为375:600:1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg·cm-2时,MoS2/GQDs碳纸电极的析氢催化能力最佳。在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率、电能回收率和整体能量回收率分别为51.15±3.15 mL·cycle-1、0.401±0.032 m3H2·m3d-1、91.16±0.054%、66.64±5.39%、72.44±2.60%、217.26±7.42%和77.37±1.50%,均略高于Pt/C阴极MEC或与之媲美。另外,MoS2/GQDs具有良好的长期稳定性,且价格便宜,有利于实际应用。  相似文献   

15.
用浸渍、烧结方法制备了不锈钢网(3×15cm)负载催化剂:由溶胶-凝胶法制备含(400目)电气石粉的二氧化钛催化剂,并与直接混合电气石粉、P-25 TiO2的复合负载催化剂进行对照;利用X射线衍射、扫描电镜、透射电镜等表征催化剂结构;研究了催化剂在反应器(14L)中由20W紫外杀菌灯照射下光催化氧化去除气相甲苯污染物的效果.结果表明,在制溶胶过程中添加微米级电气石粉,得到催化剂粒径较小,其负载量和催化活性均有提高,平均催化比活性达到1.90mg·m-2·min-1或0.11mg·g-1·min-1,该催化剂在静态条件下反应4h,对初始浓度为180mg·m-3和70mg·m-3的甲苯去除率分别达到87%和82%;而同样的高初始浓度下,负载P-25仅可去除21%甲苯,复合负载P-25、电气石可去除58%甲苯,其催化比活性达到1.35mg·m-2·min-1或0.18mg·g-1·min-1.  相似文献   

16.
叶绿素是绿色植物中吸收太阳能进行光合作用的主要色素,它在可见光范围内有很好的吸收特性[1]。人们为了充分利用太阳能为人类造福开始了光合作用模拟,70年代后以叶绿素为光敏剂的研究成了科学家的热门课题。  相似文献   

17.
以氯化锡为原料,四丙基溴化铵为表面活性剂水热法制备纳米二氧化锡(SnO2)催化剂,并以钛网为基材,制备催化电极. 应用SEM,XRD等手段对催化剂进行表征. 考察了反应物浓度、反应温度和反应时间对催化剂形貌的影响. 研究了纳米SnO2催化剂对锌还原硝基苯原电池反应的电催化性能. 结果表明,当 NaOH浓度为0. 5 mol•L-1、水热反应温度160 ℃、水热反应时间15 h时,得到的SnO2催化剂是由纳米片构成的刺球状颗粒,粒径最小,约17 nm. 与平板铂电极相比,制备的催化电极对硝基苯电还原具有更高的催化活性,硝基苯转化率为74%,最大放电功率为21.9 mW•cm-2,远大于平板铂电极. 硝基苯的主要还原产物为苯胺、对乙氧基苯胺和对氯苯胺.  相似文献   

18.
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号