首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nowadays, genotoxic impurities in pharmaceuticals at lower levels are of increasing concerns not only to pharmaceutical industries but also for the regulatory agencies due to their risks for human carcinogenesis and, thus, requiring manufacturers to pay extra attention for their analysis and control. The need to determine these impurities at trace levels, based on the threshold of toxicological and daily dose, taking into consideration the often reactive and labile nature of genotoxic impurities, which poses significant analytical challenges. Therefore, sensitive and sophisticated analytical methodologies are deemed necessary in order to be able to test and control genotoxic impurities in drug substances. This review demonstrates the approaches reported in the literature for the analysis of the hazardous genotoxic impurities and the strategies used to enhance the sensitivity such as using ion spray-mass spectrometry and the separation techniques for the analysis of such impurities.  相似文献   

2.
Potential genotoxic impurities in pharmaceuticals at trace levels are of increasing concern to both pharmaceutical industries and regulatory agencies due to their possibility for human carcinogenesis. Molecular functional groups that render starting materials and synthetic intermediates as reactive building blocks for small molecules may also be responsible for their genotoxicity. Determination of these genotoxic impurities at trace levels requires highly sensitive and selective analytical methodologies, which poses tremendous challenges on analytical communities in pharmaceutical research and development. Experimental guidance for the analytical determination of some important classes of genotoxic impurities is still unavailable in the literature. Therefore, the present review explores the structural alerts of commonly encountered potential genotoxic impurities, draft guidance of various regulatory authorities in order to control the level of impurities in drug substances and to assess their toxicity. This review also describes the analytical considerations for the determination of potential genotoxic impurities at trace levels and finally few case studies are also discussed for the determination of some important classes of potential genotoxic impurities. It is the authors’ intention to provide a complete strategy that helps analytical scientists for the analysis of such potential genotoxic impurities in pharmaceuticals.  相似文献   

3.
马晓萌  靳兰  李雅宁  郑珲  魏芸 《色谱》2018,36(3):268-277
建立了高效液相色谱-离子阱/飞行时间质谱(HPLC-IT/TOF MS)分析违禁药品邻氯苯基环戊酮样品中杂质成分的方法。对邻氯苯基环戊酮标准品进行多级质谱分析,根据各碎片离子的精确质量数推测邻氯苯基环戊酮的裂解路径,并利用该方法检测出邻氯苯基环戊酮样品中的2种杂质成分:2-氯苯甲酸酸酐和1,2-二邻氯苯甲酰基环戊烯,推断出该违禁药品的合成方法,为追溯其来源提供了重要依据。同时建立了制备邻氯苯基环戊酮标准品的方法,制备高效液相色谱条件是流动相甲醇-水(85∶15,v/v),流速8 mL/min,进样量1 mL。制备得到的邻氯苯基环戊酮标准物质纯度为99.53%。该方法简单、高效,可拓展应用于其他违禁药物标准物质的制备。  相似文献   

4.
5.
To purify a material and remove the excess impurities one should first recognize that whether they are actually present and what their nature is. In the past, this was not always done. But presently drug analysis and pharmaceutical impurities are the subjects of constant review in the public interest. The International Conference on Harmonisation (ICH) guidelines achieved a great deal in harmonizing the definitions of the impurities in new drug substances. It is necessary to perform all the investigations on appropriate reference standards of drug and impurities to get meaningful specifications. In order to meet the challenges to ensure high degree of purity of drug substances and drug products, a scheme is proposed for profiling drug impurity. Finally, analytical methods based on analytical instrumentation must be employed to quantitate drug substance and its impurities. Important aspects and suggestions related to drug analysis and pharmaceutical impurities are discussed.  相似文献   

6.
The present study describes the identification and characterization of two process impurities and major stress degradants in darifenacin hydrobromide using high performance liquid chromatography (HPLC) analysis. Forced degradation studies confirmed that the drug substance was stable under acidic, alkaline, aqueous hydrolysis, thermal and photolytic conditions and susceptible only to oxidative degradation. Impurities were identified using liquid chromatography coupled with ion trap mass spectrometry (LC-MS/MS(n)). Proposed structures were unambiguously confirmed by synthesis followed by characterization using nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR) and elemental analysis (EA). Based on the spectroscopic, spectrometric and elemental analysis data, the unknown impurities were characterized as 2-{1-[2-(2,3-dihydrobenzofuran-5-yl)-2-oxo-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-A), 2-[1-(2-benzofuran-5-yl-ethyl)-pyrrolidin-3-yl]-2,2-diphenylacetamide (Imp-B), 2-{1-[2-(2,3-dihydrobenzofuran-5-yl)-ethyl]-1-oxy-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-C) and 2-{1-[2-(7-bromo-2,3-dihydrobenzofuran-5-yl)-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-D). Plausible mechanisms for the formation and control of these impurities have also been proposed. The method was validated as per regulatory guidelines to demonstrate specificity, sensitivity, linearity, precision, accuracy and the stability-indicating nature. Regression analysis showed a correlation coefficient value greater than 0.99 for darifenacin hydrobromide and its impurities. The accuracy of the method was established based on the recovery obtained between 86.6 and 106.7% for all impurities.  相似文献   

7.
8.
Degradation products and related compounds occurring in drugs as impurities have often very similar properties as the parent substance. Therefore new analytical separation methods which show appropriate selectivity are required. Apart from improvements on silica-based reversed phases the attention has also been focused on other materials such as modified inorganic supports. In this study a polystyrene-coated zirconia was examined as an alternative in analysis of parent drug (doxazosin) and its impurities. Doxazosin and its five pharmacopoeial impurities were separated within 16 min. The suitability of the developed method was verified and confirmed by means of linearity, precision, inter-day precision, robustness and determination of LOD as well as LOQ. The results proved the potential of zirconia-based stationary phases to be useful alternatives in the field of drug analysis.  相似文献   

9.
The toxicological assessment of genotoxic impurities is important in the regulatory framework for pharmaceuticals. In this context, the application of promising computational methods (e.g. Quantitative Structure-Activity Relationships (QSARs), Structure-Activity Relationships (SARs) and/or expert systems) for the evaluation of genotoxicity is needed, especially when very limited information on impurities is available. To gain an overview of how computational methods are used internationally in the regulatory assessment of pharmaceutical impurities, the current regulatory documents were reviewed. The software recommended in the guidelines (e.g. MCASE, MC4PC, Derek for Windows) or used practically by various regulatory agencies (e.g. US Food and Drug Administration, US and Danish Environmental Protection Agencies), as well as other existing programs were analysed. Both statistically based and knowledge-based (expert system) tools were analysed. The overall conclusions on the available in silico tools for genotoxicity and carcinogenicity prediction are quite optimistic, and the regulatory application of QSAR methods is constantly growing. For regulatory purposes, it is recommended that predictions of genotoxicity/carcinogenicity should be based on a battery of models, combining high-sensitivity models (low rate of false negatives) with high-specificity ones (low rate of false positives) and in vitro assays in an integrated manner.  相似文献   

10.
The profiling and identification of impurities in raw pharmaceuticals or finished drug product is an essential part of the pharmaceutical manufacturing process. Critical to this process is the ability to confirm known, expected impurities and identify new impurities. LC coupled to electrospray MS is a powerful tool that has been employed for the identification of impurities, natural products, drug metabolites, and proteins. In this study, we show how sub 2 microm porous particle LC has been coupled to hybrid quadrupole orthogonal TOF mass spectrometer to profile and identify the impurities of the common cholesterol lowering drug simvastatin. The hybrid quadrupole TOF mass spectrometer was operated by alternating the collision cell energies to allow for the rapid, facile conformation of the identity of impurities. Using this process it was possible to identify all of the common impurities of simvastatin in a single 10 min run. During the analysis a new impurity of simvastatin was detected and identified as the saturated ring form of simvastatin.  相似文献   

11.
《Analytical letters》2012,45(18):2859-2871
A method coupling high-performance liquid chromatography with diode-array detector and electrospray ionization mass spectrometry (HPLC-DAD-ESI/MSn) has been developed for the separation and characterization of atorvastatin and its related impurities. The results obtained using positive ion mode showed some diagnostic fragments that are useful for the identification of atorvastatin related impurities in real samples. Quantitative analysis of drug impurities was performed in the multiple reaction monitoring mode. Quantification limits for impurities were in the ranges 21.5–70.8 ng mL?1. The method was successfully applied to the drug purity evaluation and quantitative determination of atorvastatin related impurities in bulk drugs and pharmaceutical formulations.  相似文献   

12.
利用气相色谱-质谱法在电子电离源下对用于治疗肺癌的药物泰瑞沙(Tagrisso)进行分析,对主成分奥斯替尼(Osimertinib)在质谱中产生的主要的碎片离子进行归属,推测其可能的质谱裂解途径。参考主成分奥斯替尼的质谱裂解方式,由质谱裂解机理的角度出发对该药物中的4个未知的关键杂质的结构进行有效解析。此外,发现奥斯替尼及其个别杂质在质谱裂解过程中出现了显著的违背偶电子规则的碎片离子。通过对药物泰瑞沙的质谱分析期望能够提供一些分析、解析药物中未知杂质的思路和方法。  相似文献   

13.
Proteomic methods were used to identify the levels of impurities in three commercial plasma‐derived clotting factor VIII‐von Willebrand factor (FVIII/VWF) concentrates. In all three concentrates, significant amounts of other plasma proteins were found. In Octanate and Haemoctin, two concentrates developed in the 1990s, the major impurities identified were inter‐α inhibitor proteins, fibrinogen and fibronectin. These two concentrates were also found to contain additional components such as clotting factor II (prothrombin) that are known activators of FVIII. In Wilate, a recently developed FVIII/VWF concentrate, the amount of these impurities was significantly reduced. Batch‐to‐batch variations and differences between three investigated products were detected using iTRAQ, an isotope labeling technique for comparative MS, demonstrating the potential value of this technique for quality control analysis. The importance of thorough proteomic investigations of therapeutic FVIII/VWF preparations from human plasma is also discussed.  相似文献   

14.
With advancements in ionization methods and instrumentation, liquid chromatography/mass spectrometry (LC/MS) has become a powerful technology for the characterization of small molecules and proteins. This article will illustrate the role of LC/MS analysis in drug discovery process. Examples will be given on high-throughput analysis, structural analysis of trace level impurities in drug substances, identification of metabolites, and characterization of therapeutic protein products for process improvement. Some unique MS techniques will also be discussed to demonstrate their effectiveness in facilitating structural identifications.  相似文献   

15.
Serotonin receptor antagonist drug Ondansetron hydrochloride injectable formulation containing all related substances was identified and quantified by a single, simple, sensitive, eco-friendly, and green high-performance liquid chromatography method. The disseverment of all impurities was achieved with the Discovery Cyano (250 × 4.6) mm, 5 μm column. The gradient program was composed of pH 5.7 phosphate buffer as mobile phase A and acetonitrile as mobile phase B. The flow rate, column compartment temperature, and detection wavelengths were 0.9 mL/min, 30°C, and 216 nm, respectively. The method was validated as per current regulatory guidelines. The obtained %relative standard deviation for the precision results was between 0.55 and 2.72% for all impurities. The correlation coefficient values from the linearity experiment for impurities and analyte were more than 0.995. The accuracy results were obtained between 88.4 and 113.0% for all impurities. Both sample and standard solutions showed 24 h stability at benchtop and refrigerator conditions. All impurities and analytes met the specificity and mass balance for all forced degradation conditions. Quality-by-design-based design of experiments was utilized to establish the method's robustness. Method greenness was assessed by using the current advanced tool green analytical procedure index, National Environmental Methods Index, and analytical eco-scale.  相似文献   

16.
A method is presented for the routine analysis of high-purity iron and chromium by neutron activation analysis. The impurities determined are those which are significant in the control of the purification processes. Nine elements are determined in iron without separation; Co, Cr and Mo can also be determined after an anion-exchange separation. In chromium, a single elution on an anion exchanger allows the detection of nine significant impurities. For the determination of nickel a special method is used. All these methods were chosen to obtain the most comprehensive analytical procedure at the lowest cost.  相似文献   

17.
A simple, fast and selective micellar electrokinetic chromatographic (MEKC) method for the simultaneous assay of ketorolac tromethamine and its known related impurities (1-hydroxy analog of ketorolac, 1-keto analog of ketorolac and decarboxylated ketorolac), in both drug substance and coated tablets, is described. The compounds were detected at 323 nm, and flufenamic acid (FL) and tolmetin (TL) were chosen as internal standards to quantify ketorolac tromethamine and impurities, respectively. The multivariate optimization of the experimental conditions was carried out by means of the response surface study, considering as responses the resolution values and analysis time. The optimized background electrolyte (BGE) consisted of a mixture of 13 mM boric acid and phosphoric acid, adjusted to pH 9.1 with 1 M sodium hydroxide, containing 73 mM sodium dodecyl sulfate (SDS). Optimal temperature and voltage were 30 degrees C and 27 kV. Applying these conditions, all compounds were resolved in about 6 min. The related substances could be quantified up to the 0.1% (w/w) level. Validation was performed, either for drug substances and drug product, evaluating selectivity, robustness, linearity and range, precision, accuracy, detection and quantitation limits and system suitability.  相似文献   

18.
A reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of citalopram hydrobromide and its process impurities in bulk drugs and pharmaceutical formulations was developed. The separation was accomplished on an Inertsil ODS 3V (250x4.6 mm; particle size 5 mum) column using 0.3% diethylamine (pH = 4.70) and methanol/acetonitrile (55:45 v/v) as mobile phase in a gradient elution mode. The eluents were monitored by a photodiode array detector set at 225 nm. The chromatographic behavior of all the related substances was examined under variable conditions of different solvents, buffer concentrations, and pH. The method was validated in terms of accuracy, precision, and linearity. The method could be of use not only for rapid and routine evaluation of the quality of citalopram in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Three unknown impurities were consistently observed during the analysis of different batches of citalopram. Forced degradation of citalopram was carried out under thermal, photo, acidic, alkaline, and peroxide conditions. The degradation products and unknown impurities were isolated and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectroscopy.  相似文献   

19.
A simple high performance liquid chromatographic method for the determination of process-related impurities in bulk drug of the central anticholinergic compound pridinol mesylate, has been developed and validated. Spectroscopically characterized synthetic impurities were used as standards. The chromatographic separation was optimized employing an experimental design strategy, and was achieved on a C18 column with a mobile phase containing 50 mM potassium phosphate buffer (pH 6.4), MeOH and 2-propanol (20:69:11, v/v/v), delivered at a flow rate of 1.0 mL min−1. UV detection was performed at 245 nm. The optimized method was thoroughly validated, demonstrating to be selective, when the chromatogram was recorded with a diode-array detector and peak purities were evaluated (>0.9995). The method is robust and linear (r2 > 0.99) over the range 0.05-2.5% (5-250% with regards to the 1% specification limit for both process-related impurities); it is also precise, regarding repeatability (RSD ≤ 1.5% for all of the analytes) and intermediate precision aspects and LOQ values for the impurities are below 0.01%. Method accuracy, evidenced by low bias of the results and analyte recoveries in the range of 99.1-102.7%, was assessed at five analyte concentration levels. The usefulness of the determination was also demonstrated through the analysis of different lots of pridinol mesylate bulk substance. The results indicate that the method is suitable for the quality control of the bulk manufacturing of pridinol mesylate drug substance.  相似文献   

20.
Trimetazidine dihydrochloride is an anti-anginal drug, which possesses protective properties against ischemia inducing heart damage. In this paper, a new procedure for liquid chromatographic analysis was successfully developed, optimized, and applied in assessment of trimetazidine dihydrochloride content and its impurities, Y-145, Y-235, and Y-234 at most 1.0%, 0.2%, and 0.2%, respectively, in commercially available pharmaceutical preparation containing 35 mg of trimetazidine dihydrochloride. The retention behavior of trimetazidine dihydrochloride and its impurities is investigated by using several stationary and mobile phases to settle a simple, sensitive, and precise RP-HPLC method. The separation conditions are optimized by DryLab 2000 Plus Chromatography Optimization Software version 3.5.00. Separations are performed on PurospherSTAR RP18 endcapped (150 x 4.6 mm, 5 microm particle size) column at 20 degrees C with UV detection at 210 nm. The mobile phase composition is acetonitrile-aqueous phase (10 mmol/L disodium hydrogenphosphate and 2 mmol/L sodium dihydrogen phosphate, pH 7.6) (30:70 v/v). Afterwards, the method is validated; the important statistical parameters for selectivity/specificity, linearity, precision, limit of detection, and quantitation are defined. The recovery value of the trimetazidine dihydrochloride is 98.06%, and the content of impurities is 0.23% for Y-145, less than 0.02% for Y-235, and less than 0.01% for Y-234. In addition, this method is used for analyzing trimetazidine dihydrochloride and its impurities in pharmaceuticals and bulk drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号