首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   6篇
化学   81篇
晶体学   3篇
物理学   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   19篇
  2012年   7篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1994年   2篇
  1985年   1篇
排序方式: 共有107条查询结果,搜索用时 93 毫秒
1.
Potential genotoxic impurities in pharmaceuticals at trace levels are of increasing concern to both pharmaceutical industries and regulatory agencies due to their possibility for human carcinogenesis. Molecular functional groups that render starting materials and synthetic intermediates as reactive building blocks for small molecules may also be responsible for their genotoxicity. Determination of these genotoxic impurities at trace levels requires highly sensitive and selective analytical methodologies, which poses tremendous challenges on analytical communities in pharmaceutical research and development. Experimental guidance for the analytical determination of some important classes of genotoxic impurities is still unavailable in the literature. Therefore, the present review explores the structural alerts of commonly encountered potential genotoxic impurities, draft guidance of various regulatory authorities in order to control the level of impurities in drug substances and to assess their toxicity. This review also describes the analytical considerations for the determination of potential genotoxic impurities at trace levels and finally few case studies are also discussed for the determination of some important classes of potential genotoxic impurities. It is the authors’ intention to provide a complete strategy that helps analytical scientists for the analysis of such potential genotoxic impurities in pharmaceuticals.  相似文献   
2.
In this study, molecular dynamics simulation is used to investigate the effects of water-based substitutional defects in zeolitic imidazolate frameworks (ZIF)-8 membranes on their reverse osmosis (RO) desalination performance. ZIF-8 unit cells containing up to three defect sites are used to construct the membranes. These substitutional defects can either be Zn defects or linker defects. The RO desalination performance of the membranes is assessed in terms of the water flux and ion rejection rate. The effects of defects on the interactions between the ZIF-8 membranes and NaCl are investigated and explained with respect to the radial distribution function (RDF) and ion density distribution. The results show that ion adsorption on the membranes occurs at either the nitrogen atoms or the defect sites. Complete NaCl rejection can be achieved by introducing defects to change the size of the pores. It has also been discovered that the presence of linker defects increases membrane hydrophilicity. Overall, molecular dynamics simulations have been used in this study to show that water-based substitutional defects in a ZIF-8 structure reduce the water flux and influence its hydrophilicity and ion adsorption performance, which is useful in predicting the type and number of defect sites per unit cell required for RO applications. Of the seven ZIF-8 structures tested, pristine ZIF-8 exhibits the best RO desalination performance.  相似文献   
3.
As a part of the systematic studies on symmetric liquid crystal dimer homologous series, α,ω-bis-(4-n-alkylaniline benzylidene-4′-oxy) alkanes, (referred to as m.OnO.m with m = 3, 4, and 5; and n = 8, 9, and 10), we present in this article the nature of phase transitions across isotropic–nematic and nematic–smectic-A (N–SmA) phases exhibited by the just mentioned compounds. The methods employed are differential scanning calorimetry and dilatometry. The compounds studied were 3.O8O.3, 4.O8O.4, and 5.O8O.5; and 3.O9.03, 5.O9O.5, 3.O10O.3, 4.O10O.4, and 5.O10O.5. Different from the case of their corresponding monomers, all these compounds exhibit a nematic phase only with the exception of 5.O8O.5 which exhibits a SA phase in addition to the nematic phase. The phase transitions viz., isotropic–nematic transitions studied in all these compounds were confirmed to be of first-order nature, whereas the N–SmA transition exhibited by the compound 5.O8O.5 only was found to be of second-order nature. We also report in this article the calculated density jumps, thermal expansion coefficient maxima, and pressure dependence of transition temperatures which are analyzed in the light of the available literature data.  相似文献   
4.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of urapidil and aripiprazole in human plasma. A simple liquid–liquid extraction with ethyl acetate was used for the sample preparation. Chromatographic separation was achieved on a Phenomenex C18 (4.6 × 50 mm, 5 µm) column with 0.1% formic acid–acetonitrile (10:90, v/v) as the mobile phase with flow rate of 0.6 mL/min. The quantitation of the target compounds was determined in a positive ion multiple reaction monitoring mode. Calibration plots were linear over the range of 2.0–2503.95 ng/mL for urapidil and 1.0–500.19 ng/mL for aripiprazole. The lower limit of quantitation for urapidil and aripiprazole was 2.0 and 1.0 ng/mL, respectively. Mean recovery was in the range of 69.94–75.62% for both analytes and internal standards. Intra‐day and inter‐day precisions of the assay at three concentrations were 2.56–5.89% with accuracy of 92.31–97.83% for urapidil, and 3.14–6.84% with accuracy of 91.38–94.42% for aripiprazole. The method was successfully applied to human pharmacokinetic study of urapidil and aripiprazole in healthy human male volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
Novel, porous NiCo2O4 nanotubes (NCO‐NTs) are prepared by a single‐spinneret electrospinning technique followed by calcination in air. The obtained NCO‐NTs display a one‐dimensional architecture with a porous structure and hollow interiors. The effect of precursor concentration on the morphologies of the products is investigated. Due to their unique structure, the prepared NCO‐NT electrode exhibits a high specific capacitance (1647 F g?1 at 1 A g?1), excellent rate capability (77.3 % capacity retention at 25 A g?1), and outstanding cycling stability (6.4 % loss after 3000 cycles), which indicates it has great potential for high‐performance electrochemical capacitors. The desirable enhanced capacitive performance of NCO‐NTs can be attributed to the relatively large specific surface area of these porous and hollow one‐dimensional nanostructures.  相似文献   
6.
7.
Bi(NO3)3.5H2O, a cheaply available, crystalline solid has been found to readily effect selective oxidation of a variety of sulfides to sulfoxides in acetic acid medium at room temperature in fair to good yields.  相似文献   
8.
Herein,we report on the synthesis and lithium storage properties of electrospun one-dimensional(1D) CuFe_2O_4 nanomaterials.1D CuFe_2O_4nanotubes and nanorods were fabricated by a single spinneret electrospinning method followed by thermal decomposition for removal of polymers from the precursor fibers.The as-prepared CuFe_2O_4 nanotubes with wall thickness of ~50 nm presented diameters of ~150 nm and lengths up to several millimeters.It was found that phase separation between the electrospun composite materials occured during the electrospinning process,while the as-spun precursor nanofibers composed of polyacrylonitrile(PAN),polyvinylpyrrolidone(PVP) and metal salts might possess a core-shell structure(PAN as the core and PVP/metal salts composite as the shell) and then transformed to a hollow structure after calcination.Moreover,as a demonstration of the functional properties of the 1D nanostructure.CuFe_2O_4 nanotubes and nanorods were investigated as anodes for lithium ion batteries(LIBs).It was demonstrated that CuFe_2O_4 nanotubes not only delivered a high reversible capacity of ~816 mAh·g~(-1) at a current density of 200 mA·g~(-1)over 50 cycles,but also showed superior rate capability with respect to counterpart nanorods.Probably,the enhanced electrochemical performance can be attributed to its high specific surface areas as well as the unique hollow structure.  相似文献   
9.
10.
Chauhan  Jagdish Kumar  Kumar  Manindra  Yadav  Madhavi  Tiwari  Tuhina  Srivastava  Neelam 《Ionics》2017,23(10):2943-2949

Polymer electrolyte has seen tremendous growth after works of Fenton & Armand, and energy devices are being produced at commercial level. Today’s social lifestyle needs miniaturized energy devices at every step of life; consequently, they add up to chemical garbage of the world. The sustainable development in the field needs eco-friendly energy devices. Hence, starch (being at low cost, abundant in nature and eco-friendly) has received great scientific attention. In recent past, many attempts have been made to modify the various starches to get fast ion-conducting materials. In our laboratory, also, wheat, potato, rice and arrowroot starches have been modified with different sodium salts, and in each case, considerably high-conducting (>10−3 S/cm) films have been found. In present case, also, a high-conducting transparent film (10−2 S/cm) is obtained with corn starch and NaClO4 salt after being crosslinked with glutaraldehyde (GA). Bode plots (both phase and magnitude), capacitive-response plot, capacitive-frequency plots and linear sweep voltammetry curves are analysed to explain the possibility of using the prepared electrolyte in capacitive device. The larger electrochemical stability window (ESW) ~ 2.4 V and smaller ion relaxation time ~ 65 μs make it a potential candidate for device fabrication. The equivalent series resistance is ~6.252 Ω for 0.8-mm-thick sample.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号