首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stationary phases are the basis of the development and application of high-performance liquid chromatography (HPLC). In this review we focused on the development of silica-based stationary phases, including the synthesis of silica gel and the application of silica in hydrophilic interaction chromatography (HILIC), reversed-phase liquid chromatography (RPLC), chiral separation chromatography, and ion chromatography. New stationary phases, advances in ionic liquid-modified silica, silica-based core-shell materials, and silica-based monolithic columns for HPLC are introduced separately.  相似文献   

2.
Summary Phenoxy acid herbicides have been determined by use of high-pressure liquid chromatography (HPLC). The separation efficiency of several stationary phases like octadecyl silica and nitril silica has been estimated using different mobile phases. Regarding the necessary experimental conditions for separating phenoxy acids, the enrichment phases for on-line operation have been tested by use of column switching. The method of sample enrichment is described and the enrichment factors have been calculated.
Bestimmung von Phenoxycarbonsäure-Herbiciden durch HPLC und On-line-AnreicherungI. Möglichkeiten der chromatographischen Trennung durch HPLC unter besonderer Berücksichtigung der On-line-Anreicherung der Herbicid-Verbindungen
  相似文献   

3.
Stationary phases obtained by coating side-chain liquid crystalline polymers (LCPs) with the mesogenic rod like units laterally attached to a polysiloxane backbone via a flexible spacer have been already reported. These phases show excellent planarity and shape recognition for polynuclear aromatic hydrocarbon (PAH) solutes in reversed-phase liquid chromatography. Optimization of these stationary phases in terms of molecular parameters of the polymer is here described. Fifteen stationary phases have been prepared varying different parameters such as the spacer length, the aliphatic tail length, and the proportion of laterally attached mesogenic units along the polymer chain. The results show that the combination of a long spacer and long terminal chains, which generates a smectic phase in the polymer bulk, leads to the best chromatographic performances towards planarity and shape recognition for PAH solutes.  相似文献   

4.
Chemical bonding reaction and immobilization through low energy radiation (heating) have been investigated to fix a side-chain liquid crystalline polymer (SC-LCP) on silica particles in order to use the resulting modified silica in normal-phase HPLC. Highly stable chromatographic stationary phases are observed under excellent polymer solvent flow conditions (THF) for both methods and better column efficiencies are also exhibited towards PAHs' separation compared to the classical coated stationary phase. The characterization of these new stationary phases and the rationale for improved column stability have been investigated by solid state 13C and 29Si CP/MAS NMR spectroscopy. It is clearly shown that the chemical bonding is achieved by the classical hydrosilylation reaction between PHMS chains and vinyl modified silica. The bonded polymer is likely a copolymer than a homopolymer. The immobilization of the SC-LCP by heating results in the breaking of Si-O-Si bonds of the polysiloxane chain after the attack of the silica surface silanols. Applications to fullerenes and carotenes separation of these bonded stationary phases are compared to the separation power of a classical monomeric C18 stationary phase in NP-HPLC as n-hexane-toluene or methyl-tertiobutyl ether-methanol mixtures.  相似文献   

5.
Chu C  Liu R 《Chemical Society reviews》2011,40(5):2177-2188
With the increasing requirement for analysis and separation of samples related to genomics, proteomics, metabolomics, pharmacology and agrochemistry, diverse stationary phases for liquid chromatography have been prepared by Cu(i)-catalyzed 1, 3-dipolar azide-alkyne cycloaddition reaction (CuAAC). It has been proved that CuAAC is a powerful tool for preparing covalently bonded stationary phases. In this tutorial review, we highlighted the preparation of separation materials by immobilization of functional groups on silica beads, polymer beads and agarose via CuAAC and their applications in liquid chromatography and related purposes, such as separation of polar compounds, enrichment of valuable bio-samples, orthogonal two-dimensional HPLC and chiral separation. Meanwhile, agarose-based separation materials for affinity chromatography are reviewed.  相似文献   

6.
傅若农  黄载福 《分析化学》1993,21(8):896-899
合成了一种新的毛细管气相色谱用固定液——侧链含冠醚液晶的聚硅氧烷,这种固定液易于涂渍在弹性石英毛细管柱上,柱效高,热稳定性好,极性中等,它具有高分子液晶和高分子冠醚固定液的双重保留性能,适于分离多种异构体。  相似文献   

7.
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100 °C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance.  相似文献   

8.
Twelve sugars and polyols were analyzed using high-performance liquid chromatographic (HPLC) and supercritical fluid chromatographic (SFC) systems with silica and bonded silica stationary phases with the help of an evaporative light-scattering detector. The separation capacities of the two techniques are discussed. The retention data were studied using different chemometric methods (automatic classification, factor analysis). They clearly show that SFC and HPLC have the same retention process for these compounds and that is the sum of only two mathematically independent physico-chemical phenomena.  相似文献   

9.
A new kind of side chain liquid crystalline polysiloxane containing a crown ether with a longer spacer (PSC-11) has been prepared and coated on a fused silica capillary column. The main chroma-tographic characteristics including efficiency, polarity, and selectivity have been examined. The phase exhibits the retention properties of both liquid crystal and crown ether stationary phases and possesses higher efficiency and better selectivity than PSC-3, which has a shorter spacer between the main polysiloxane chain and liquid crystalline side chain.  相似文献   

10.
Summary A new class of stationary phases for high-performance liquid chromatography (HPLC) are described which simulate in their retention chracteristics ion-pair separations. The phases consist of mixtures of chemically dissimilar ligands chemically bonded to silica supports. These phases are largely reversed-phase in nature, but also contain significant ion-exchange properties, at levels similar to those demonstrated to occur in ionpairing. By bonding both ionic and hydrophobic groups in the correct proportions, mixed retention mechanisms are created, resulting in unique selectivities, while retaining the excellent stabilities and efficiencies characteristic of bonded phases. The ratio of hydrophobic to ionic character can be controlled during the synthesis, and is used as a tool to vary the stationary phase, rather than only the mobile phase, to effect the separation desired. The synthesis and behavior of both anionic and cationic/reversed-phase materials are described, and are applied to the simultaneous separation of nucleosides and nucleotides, and to the separation of the catecholamines.Presented at the 14th International Symposium on Chromatography London, September, 1982.  相似文献   

11.
Wang Q  Baker GA  Baker SN  Colón LA 《The Analyst》2006,131(9):1000-1005
Trimethoxysilane "ionosilane" derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 microm diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and (13)C and (29)Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 micromol m(-2) for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.  相似文献   

12.
Summary The preparation, characterization and potential liquid chromatographic applications of various organometallic iron complexes silica stationary phases are presented. These new supports are synthesized by covalently linking ferrocene, as well as some of its cationic derivatives, to appropriately derivatized silica support matrices. These columns exhibit moderate to high selectivity towards the separation of polycyclic aromatic hydrocarbons (PAHs). A charge transfer retention mechanism has been proposed. A comparison with a reference stationary phase, 3,5-dinitrobenzamide (DNB), to quantify the acceptor power of the new stationary bonded phases, is also reported. Finally, the effect of varying the derivatives of the bonded metallocene on PAHs retention is discussed.  相似文献   

13.
硅胶基质高效液相色谱填料研究进展   总被引:2,自引:0,他引:2  
高效液相色谱(HPLC)不仅是一种有效的分析分离手段,也是一种重要的高效制备分离技术。色谱柱是HPLC系统的核心,不同性能的填料是HPLC广泛应用的基础。硅胶是开发最早、研究最为深入、应用最为广泛的HPLC固定相基质,其制备方法主要有喷雾干燥法、溶胶-凝胶法、聚合诱导胶体凝聚法及模板法等。近年来,亚2μm小粒径硅胶、核-壳型硅胶、双孔径硅胶、介孔性硅胶、有机杂化硅胶等新型硅胶应用于HPLC并取得了色谱分离技术的飞速发展,例如基于亚2μm填料的超高压液相色谱技术、基于核-壳型填料的快速分离技术、基于杂化硅胶填料的高温液相色谱技术等。硅胶经表面化学键合、聚合物包覆等有机改性可制得先进的大分子限进填料、温敏性填料、手性填料等,大大扩展了HPLC的应用范围。本文对液相色谱用硅胶的制备方法、改性与修饰方法以及硅胶基质固定相的评价方法加以系统综述,概述了新型硅胶在HPLC中的应用进展,并对硅胶基质填料的发展方向与应用前景进行了展望。  相似文献   

14.
Ionic liquids (ILs) immobilized on silica as novel high performance liquid chromatography (HPLC) stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In this paper, N-methylimidazolium IL-modified silica-based stationary phase (SilprMim) was prepared and investigated as a novel multi-interaction stationary phase charged positively for protein separation. The results indicate that all of the basic proteins tested cannot be absorbed on this novel stationary phase, whereas all of the acidic proteins tested can be retained, and the baseline separation of eight kinds of acidic protein standards can be achieved when performed in reversed phase/ ion-exchange chromatography (RPLC/IEC) mode. Compared with commonly used commercial octadecylated silica (ODS) column, the novel stationary phase can show selectivity and good resolution to acidic proteins, which has a promising application in the separation and analyses of acidic proteins from the complex samples in proteomics. In addition, the chromatographic behavior of proteins, the effect of the ligand structure and the retention mechanism on this stationary phase were also investigated.  相似文献   

15.
Abstract

Liquid crystalline side group polymers support coated on silica gels have been applied as stationary phases in high performance liquid chromatography. It has been possible to show that also in liquid chromatography, separations based on the mesophase structure can be observed in analogy to gas chromatography. From results of separations in which temperature, flow rate, sample concentration and the solvent strength of the mobile phase were varied, this work derives views on the fundamental mechanisms involved. In addition, it will be shown that different mechanisms are probably involved in the separation of steroids and dinitrobenzene isomers on these stationary phases.  相似文献   

16.
The use of macroporous silica gels, silochroms, with homogeneous geometrical structure as adsorbents and supports for liquid stationary phases in liquid chromatography is described.

The selectivity of separation and retention volumes of silochroms depend strongly on the degree of hydroxylation of the surface and on the nature of the mobile phase. In optimizing the parameters, rapid and complete separation of strongly polar isomers and biological active substances and drugs is obtained.

The dependence of retention volumes and column efficiency on the amount of liquid phase, covered on silochrom, has been investigated.  相似文献   


17.
In this article, a new and effective stationary phase based on ionic liquid modified silica is first reported and used for the separation of ephedrines in high-performance liquid chromatography (HPLC). The separation results indicate the high efficiency and reproducibility of the stationary phase. The electrostatic interaction, ion-exchange interaction between the solutes and the stationary phase are considered to attribute the effective separation. Moreover, the free silanols on the surface of the silica are effectively masked by the immobilized ionic liquid, a result of which is to decrease the non-specific absorption.  相似文献   

18.
A new type of high performance liquid chromatography (HPLC) stationary phase was prepared, and its chromatographic properties were evaluated. The sorbent was composed of metallacarborane covalently bound to silica. Because of the chemical structure of the immobilized metallacarborane, the synthesized stationary phase was able to interact with nonpolar analytes via hydrophobic interactions. The chromatographic behavior of several low-molecular-weight hydrocarbons on the sorbent under typical reversed-phase conditions was compared with octadecyl-, sulfo phenyl- and aminopropyl-modified silica stationary phases. Moreover, as a consequence of the synthetic protocol employed, the immobilization of the metallacarborane led to the development of a zwitterionic chemically bonded phase, which demonstrated excellent resistance to "phase collapse" in a 100% aqueous environment. Finally, preliminary experiments indicated that the new stationary phase has the potential for utilization in hydrophilic interaction chromatography (HILIC) mode for the separation of polar compounds.  相似文献   

19.
Summary Specific side-on-fixed liquid-crystalline polymers (SOLCP) have been synthesized for use in silica-modified stationary phases in high-performance liquid chromatography (HPLC). The mesogenic side group of the SOLCP is composed of three benzoate-type phenyl rings with terminal alkoxy chains and is laterally linked to a polysiloxane backbone via an alkyl ester spacer arm. The dependence of the logarithm of the retention factor on the reciprocal temperature showed that the liquid-crystalline anisotropic order was conserved in the small pores (200 ? diameter) of the silica gel. The first-order nematic-isotropic transition is lost and probably becomes second-order. Adsorption enthalpies for the liquid-crystalline stationary phases have been measurement for three polycyclic aromatic hydrocarbon isomers (ortho-terphenyl, triphenylene, and chrysene) and compared with those for a commercial C18 phase. The adsorption enthalpies never exceeded 30 kJ mol−1, i.e. ten times the thermal agitation energy,RT. They were always less on the SOLCP stationary phase than on the C18 column, emphasizing the more rigid structure of the liquid crystalline phase and its mechanism based upon adsorption. Better separation of steroids, pesticides and amino acids were obtained with the LCP-coated silica than the commercial bonded C18 column. Four small peptides were successfully separated by using pure water as mobile phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号