首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Chiral-modified silica-based monoliths have become well-established stationary phases for both high performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The silica-based monoliths were fabricated either in situ in the capillaries for nano-HPLC and CEC or in a mould for “conventional” HPLC. The present review summarizes the chiral modification of silica monoliths and the recent development in the field of enantioselective separations by nano-HPLC and CEC.  相似文献   

2.
介绍了含极性基团硅质高效液相色谱固定相的研究进展,对反相固定相的合成、极性基团作用机理和色谱性质方面作了评述,对手性分离固定相和高效离子色谱固定相方面的进展也作了简单综述。  相似文献   

3.
Ionic liquids (ILs) immobilized on silica as novel high performance liquid chromatography (HPLC) stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In this paper, N-methylimidazolium IL-modified silica-based stationary phase (SilprMim) was prepared and investigated as a novel multi-interaction stationary phase charged positively for protein separation. The results indicate that all of the basic proteins tested cannot be absorbed on this novel stationary phase, whereas all of the acidic proteins tested can be retained, and the baseline separation of eight kinds of acidic protein standards can be achieved when performed in reversed phase/ ion-exchange chromatography (RPLC/IEC) mode. Compared with commonly used commercial octadecylated silica (ODS) column, the novel stationary phase can show selectivity and good resolution to acidic proteins, which has a promising application in the separation and analyses of acidic proteins from the complex samples in proteomics. In addition, the chromatographic behavior of proteins, the effect of the ligand structure and the retention mechanism on this stationary phase were also investigated.  相似文献   

4.
Wu R  Hu L  Wang F  Ye M  Zou H 《Journal of chromatography. A》2008,1184(1-2):369-392
The column technologies play a crucial role in the development of new methods and technologies for the separation of biological samples containing hundreds to thousands compounds. This review focuses on the development of monolithic technology in micro-column formats for biological analysis, especially in capillary liquid chromatography, capillary electrochromatography and microfluidic devices in the past 5 years (2002-2007) since our last review in 2002 on monoliths for HPLC and CEC. The fabrication and functionalization of monoliths were summarized and discussed, with the aim of presenting how monolithic technology has been playing as an attractive tool for improving the power of existing chromatographic separation processes. This review consists of two parts: (i) the recent development in fabrication of monolithic stationary phases from direct synthesis to post-functionalization of the polymer- and silica-based monoliths tailoring the physical/chemical properties of porous monoliths; (ii) the application of monolithic stationary phases for one- and multi-dimensional capillary liquid chromatography, fast separation in capillary electro-driven chromatography, and microfluidic devices.  相似文献   

5.
At present, in high-performance liquid chromatography (HPLC) for the majority of analyses, reversed-phase liquid chromatography (RPLC) is the separation mode of choice. Faster method development procedures using aggressive eluents under elevated temperature conditions, the need for improved selectivities, efficiencies and resolution, the reduction of solvent consumption and also the decrease of analysis times require reversed-phase (RP) columns of high chemical and thermal stability. Until now, the majority of columns for RPLC separations are manufactured from silica substrates. Silica has many favorable properties making this material nearly ideal as a support for RP columns. However, its solubility, that increases considerably in eluents of pH above +/-7, is a drawback preventing its widespread use over the entire pH range. In addition, also the thermal stability of silica is limited. Recently, however, substantial progress has been made in the synthesis of RPLC silica-based stationary phases showing satisfactory thermal and chemical stability under many different experimental conditions. Also, new substrates mainly based on other inorganic substrates like, e.g. alumina and zirconia have been developed now as a starting material for the preparation of RPLC stationary phases of improved chemical and thermal stability. In addition, for the same reasons, many efforts have also been made to synthesize polymer and also polymer-coated phases. These latter phases, more particularly those based on zirconia, but also polymer phases show a high degree of chemical and thermal stability compared to silica counterparts. In this paper, an overview will be given of the state-of-the-art of the thermal and chemical stability of the different available stationary phases for RPLC.  相似文献   

6.
硅胶基质高效液相色谱填料研究进展   总被引:2,自引:0,他引:2  
高效液相色谱(HPLC)不仅是一种有效的分析分离手段,也是一种重要的高效制备分离技术。色谱柱是HPLC系统的核心,不同性能的填料是HPLC广泛应用的基础。硅胶是开发最早、研究最为深入、应用最为广泛的HPLC固定相基质,其制备方法主要有喷雾干燥法、溶胶-凝胶法、聚合诱导胶体凝聚法及模板法等。近年来,亚2μm小粒径硅胶、核-壳型硅胶、双孔径硅胶、介孔性硅胶、有机杂化硅胶等新型硅胶应用于HPLC并取得了色谱分离技术的飞速发展,例如基于亚2μm填料的超高压液相色谱技术、基于核-壳型填料的快速分离技术、基于杂化硅胶填料的高温液相色谱技术等。硅胶经表面化学键合、聚合物包覆等有机改性可制得先进的大分子限进填料、温敏性填料、手性填料等,大大扩展了HPLC的应用范围。本文对液相色谱用硅胶的制备方法、改性与修饰方法以及硅胶基质固定相的评价方法加以系统综述,概述了新型硅胶在HPLC中的应用进展,并对硅胶基质填料的发展方向与应用前景进行了展望。  相似文献   

7.
The analysis of basic compounds by capillary electrochromatography (CEC) on silica-based materials using conventional HPLC stationary phases has failed to address the problem of severe peak tailing and non-reproducible chromatography. Several new generation stationary phases were evaluated using aqueous and non-aqueous mobile phases. The best results were obtained in the aqueous mode using Waters Symmetry Shield RP-8, a material in which the residual silanol groups were shielded by an octylcarbamate function. For comparison, experiments were carried out using unmodified silica.  相似文献   

8.
This article surveys recent developments in the separation and analysis of carbohydrates by high-performance liquid chromatography, in adsorption or partition modes, on polar sorbents with less polar eluents, a technique that is now termed hydrophilic interaction chromatography. A variety of chromatographic methods are included under this generic heading, the most important being adsorption chromatography on silica and partition chromatography on silica-based sorbents bearing bonded polar phases. Examples are given of the applications of these stationary phases, as well as the newer polymer-based polar sorbents, in high-performance liquid chromatography of carbohydrates and their derivatives.  相似文献   

9.
Two new silica-based long-chain alkylimidazolium stationary phases were prepared and characterized for their use in high-performance liquid chromatography. The stationary phases were both prepared by the reaction of chloropropyl silica with long-chain alkylimidazoles and were used to separate common inorganic anions. Hydrophobic interactions were also studied by the comparison of differential retention of various organic compounds. The alkyl chain length did not show an impact on the anion-exchange process but affected the hydrophobic interaction of the stationary phases.  相似文献   

10.
Up to now thermotropic liquid crystalline side chain polymers have been seldom used as stationary phases in high-performance liquid chromatography (HPLC). The preparation of a new class of surface modified silica gels is reported. They are obtained by coating on the silica support liquid crystalline polysiloxanes with mesogenic side groups laterally attached to the polymer backbone through a flexible spacer. Their chromatographic behavior in reversed-phase HPLC is described for the separation of polycyclic aromatic hydrocarbons. The results show excellent planarity and rod shape recognition capabilities. Comparisons with low-molecular-mass liquid crystalline-bonded silica and longitudinally attached liquid crystalline polymer-coated stationary phase are also reported. Finally, comparisons to commercially available C18 phases are described for the separation of complex mixtures.  相似文献   

11.
舒杨  高铭岑  易大为 《色谱》2015,33(4):428-433
考察了聚苯乙烯键合天然环果糖色谱柱MCI Gel CRS100、硅胶键合天然环果糖色谱柱Frulic N、硅胶键合异丙基氨基甲酸酯衍生环果糖色谱柱Larihc P、硅胶键合R-萘乙基氨基甲酸酯衍生环果糖色谱柱Larihc RN在正相模式下对免疫抑制剂、维生素E、姜黄类化合物、辣椒碱4组结构类似物的分离能力。考察了固定相支撑物、固定相功能基团、流动相组成等条件对色谱分离效率的影响。结果显示MCI Gel CRS100由于其固定相较强的疏水性适用于正相色谱而不适用于亲水作用色谱。衍生化的环果糖色谱柱Larihc P和Larihc RN比天然环果糖色谱柱Frulic N具有更高的选择性。三氟乙酸的加入对环果糖色谱柱在正相色谱中分离能力的影响较小。  相似文献   

12.
Reversed-phase liquid chromatography using silica-based columns is successfully applied in many separations. However, also some drawbacks exist, i.e. the analysis of basic compounds is often hampered by ionic interaction of the basic analytes with residual silanols present on the silica surface, which results in asymmetrical peaks and irreproducible retention. In this review, options to optimise the LC analysis of basic pharmaceutical compounds are discussed, i.e. eluent optimisation (pH, silanol blockers) and stationary phase optimisation (development of new columns with minimised ionic interactions). The applicability of empirical based, thermodynamically based and test methods based on a retention model to characterise silica-based reversed phase stationary phases, as well as the influence of the eluent composition on the LC analysis of basic substances is described. Finally, the applicability of chemometrical techniques in column classification is shown.  相似文献   

13.
佟巍  张养军  秦伟捷  钱小红 《色谱》2010,28(10):915-922
对高效液相色谱用硅胶作为基质的化学键合固定相的研究进展进行了全面的评述。介绍了硅胶基质填料的物理化学性质及前处理过程,详细阐述了化学键合固定相的键合反应机制和种类,概括了化学键合固定相在高效液相色谱中的应用,并对我国的硅胶基质填料研究和应用前景进行了展望。  相似文献   

14.
The focus of this review is on current developments in monolithic stationary phases for the fast analysis of inorganic ions and other small molecules in ion chromatography (IC) and capillary electrochromatography (CEC), concentrating in particular on the properties of organic (polymer) monolithic materials in comparison to inorganic (silica-based) monoliths. The applicability of these materials for fast IC is discussed in the context of recent publications, including the range of synthesis and modification procedures described. While commercial monolithic silica columns already show promising results on current IC instrumentation, polymer-based monolithic stationary phases are currently predominantly used in the capillary format on modified micro-IC systems. However, they are beginning to find application in IC particularly under high pH conditions, with the potential to replace their particle-packed counterparts.  相似文献   

15.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

16.
Capillary columns of 0.3-0.5 mm i.d. packed with 3- to 30-μm silica-based stationary phases for liquid chromatography were used for gas chromatographic separation of hydrocarbons. Column efficiencies were evaluated for various commercially available packing material. The best column efficiency was achieved with 5-μm octadecyl group bonded silica gel, the surface of which was coated with a poly (dimethylsiloxane) film. The 30-cm column produced 11,000 theoretical plates.  相似文献   

17.
The solvation parameter model is used to characterize the retention properties of a 3-aminopropylsiloxane-bonded (Alltima amino), three 3-cyanopropylsiloxane-bonded (Ultrasphere CN, Ultremex-CN and Zorbax SB-CN), a spacer bonded propanediol (LiChrospher DIOL) and a multifunctional macrocyclic glycopeptide (Chirobiotic T) silica-based stationary phases with mobile phases containing 10 and 20% (v/v) methanol-water. The low retention on the polar chemically bonded stationary phases compared with alkylsiloxane-bonded silica stationary phases arises from the higher cohesion of the polar chemically bonded phases and an unfavorable phase ratio. The solvated polar chemically bonded stationary phases are considerably more hydrogen-bond acidic and dipolar/polarizable than solvated alkylsiloxane-bonded silica stationary phases. Selectivity differences are not as great among the polar chemically bonded stationary phases as they are between the polar chemically bonded phases and alkylsiloxane-bonded silica stationary phases.  相似文献   

18.
Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.  相似文献   

19.
The synthesis of mono-6-(3-methylimidazolium)-6-deoxyperphenylcarbamoyl-beta-cyclodextrin chloride (MPCCD) and its application in chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are being reported. This chiral selector is coated onto silica gel in different weight percentages (15, 20 and 35%, w/w) to obtain CSPs having different loading content. These new chiral stationary phases are tested using normal-phase HPLC for enantioseparation of racemic aromatic alcohols. Indeed, the enantiodiscrimination abilities of these CSPs are found to be influenced by the loading content of the chiral selector. Among the three columns (MPCCD-C15, MPCCD-C20 and MPCCD-C35), the best enantioseparation results are obtained using a column containing 20% (w/w) of MPCCD (MPCCD-C20). The resolution (R(s)) obtained for p-fluorophenylethanol, p-chlorophenylethanol, p-bromophenylethanol, p-iodophenylethanol and p-fluorophenyl-3-buten-1-ol using MPCCD-C20 ranges from 3.83 to 5.65. Good enantioseparation results are obtained for these analytes under SFC separation conditions using the MPCCD-C20 column.  相似文献   

20.
This review is devoted to the application of metal complexes as column packings and liquid stationary phases in gas chromatography. Particular attention is paid to the stationary phases with nitrogen-containing functional groups (e.g., amine and ketoimine) and β-diketonates on the modified silica surface. The review also concerns the results of the research on metallomesogenes and chiral stationary phases. The factors influencing the retention mechanism in complexation gas chromatography are discussed. Practical application of the metal chelate-containing chromatographic packings for analytical separation of organic substances is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号