首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
应用分形理论的概念,结合压汞法测得的半焦孔隙结构数据,建立孔结构分形特征模型,考察了焦化过程中不同焦化温度、不同横向空间位置半焦孔隙结构分形特征及其变化规律。结果表明,孔径大于5μm 的孔不具有分形特征,孔径为20nm~5μm孔的孔隙结构具有分形特征,其分形维数为2.45~2.83,可以用分形维数定量表征孔隙结构;相同空间位置下,半焦孔结构分形维数低温时较高,随温度逐渐升高先减小,然后增大再减小;同一空间位置不同温度下分形维数的变化量较小(< 0.15),表明温度对半焦孔隙结构复杂程度的影响不明显;相同焦化温度下,半焦中心和边缘处的孔结构分形维数大于中间部位,表明中心位置和边缘位置处的孔隙结构要比中间位置处的复杂。  相似文献   

2.
聚丙烯腈基碳纤维及其原丝中的微孔尺寸分布   总被引:1,自引:0,他引:1  
利用二维小角X射线散射技术(SAXS)研究了聚丙烯腈基碳纤维及其原丝的微孔结构。结合逐级切线法、对数正态分布及麦克斯韦分布函数对2类实验样品内部微孔的尺寸分布进行了分析。结果表明,2类样品中的孔结构具有显著差别,原丝微孔在4~8 nm范围内分布比较集中,碳纤维中微孔的分布区域则移向1.3~1.8 nm。散射数据显示出明显的分形特征,碳纤维与其原丝的孔分形维数分别为1.33和1.55,表明原丝中具有较大的孔隙缺陷。相对于原丝,碳纤维微孔尺寸分布走向均匀和集中,前者则表现出比后者更宽的尺寸分布。就拟合方法而言,逐级切线法的解析手段容易引入误差,低角区的纤维表面散射和高角区的噪音容易对其结果造成影响。正态分布得到了比较窄的尺寸分布,但对于低尺寸区域孔隙的拟合不理想。麦氏分布在一定程度上弥补了以上不足,能够较好地拟合两类纤维样品中微孔的分布状况。  相似文献   

3.
选用四种生物质即稻杆(RS)、稻壳(RH)、松木屑(WC)和棉花杆(CS)制备了生物质焦,利用N2吸附/脱附和傅里叶变换红外光谱(FT-IR)仪,对制备的生物质焦的孔隙结构和表面化学性质进行了表征,分析生物质种类和制焦条件对生物质焦性质的影响。在固定床汞吸附实验台上研究了生物质焦的脱汞性能。结果表明,随着热解温度的升高,生物质焦的比表面积、微孔容积、分形维数等参数有先增大后减小的趋势。WC600、RS600、RH600均有较好的孔结构特性;热解温度升高,生物质焦表面官能团的数量和种类随之减少。不同生物质制备的焦样表面官能团的数量和种类差异较大。其中,RH600和RS600的表面官能团的种类比较丰富,而且含量相对较多。但WC600和CS600表面的官能团种类和数量都很少。生物质焦的单位汞吸附容量与其分形维数以及微孔容积之间并非简单的依附关系,其吸附能力还受含氧官能团等其他因素的影响。  相似文献   

4.
高温下煤焦的碳微晶及孔结构的演变行为   总被引:1,自引:0,他引:1  
以贵州煤为原料,在热解温度950℃~1400℃制备了各种慢速和快速热解焦,主要对高温热解过程中煤焦的碳微晶和孔结构的演变行为进行了研究,同时也研究了高温气化过程中煤焦的孔结构变化规律。结果表明,慢速热解焦和快速热解焦的C和H含量明显不同;随热解温度的升高,煤焦的碳微晶结构向有序化方向发展,但慢速热解煤焦比快速热解煤焦的"石墨化"程度大;快速热解煤焦的微孔比表面积和微孔容积明显高于慢速热解煤焦,即快速热解煤焦的孔隙结构明显比慢速热解煤焦发达;在气化反应初期,煤焦的微孔比表面积下降,微中孔比表面积增加,反应后期煤焦的总比表面积快速下降。  相似文献   

5.
高温下热解温度对煤焦孔隙结构的影响   总被引:4,自引:0,他引:4  
利用高温沉降炉在1500K~1800K制备京西无烟煤煤焦,使用化学吸附法测定不同热解温度下煤焦比表面积及孔容积与孔径的分布特征,并采用SEM观察煤焦颗粒表面的形态,分析了高温下热解温度对煤焦孔隙结构的影响规律。结果表明,煤焦的比表面积主要由孔径小于10nm的微孔和中孔构成,而其孔容积则主要由孔径为2nm~50nm的中孔构成。高温下煤焦比表面积和孔容积随热解温度的升高,呈现先增大后减小的非单调变化现象,转折温度约为1600K。出现这种变化的主要原因是煤焦在热解温度超过1600K后开始烧结,产生较为光滑致密的表面结构,部分孔隙封闭。  相似文献   

6.
污泥活性炭的结构特征及表面分形分析   总被引:10,自引:0,他引:10  
任爱玲  王启山  郭斌 《化学学报》2006,64(10):1068-1072
以城市污水厂污泥为主要原料添加适量添加剂, 采用ZnCl2化学活化法制备的污泥活性炭, 借助XRD, BET法, FT-IR, SEM等现代分析测试方法结合液相吸附法, 表征结构特征和分析表面分形维数. 结果表明: 在适宜的活化温度、活化时间、ZnCl2浓度、原料粒度等工艺条件下, 加入少量添加剂制备的污泥活性炭, 最可几孔径分布在4.16 nm左右,平均孔容0.4484~0.5122 mL•g-1, 比表面积为634.8~748 m2•g-1, IR峰中出现C—OH, C—H, N=O, C=C功能组, 孔结构是具有平行壁的狭缝状介孔结构. 由液相吸附法得到的污泥活性炭分维近似为2, 属于低分维二维表面.  相似文献   

7.
含油污泥的热解特性研究   总被引:15,自引:2,他引:13  
利用热重 傅里叶变换红外光谱联用仪与管式电阻炉对含油污泥热解特性进行了研究,分析了热解过程及影响因素(污泥性质与升温速率),并由气体析出特性研究了热解机理。结果表明,热解过程包括水分挥发、轻质油挥发、重质油热解、半焦炭化与矿物质分解五种反应,矿物油反应集中发生在220℃~480℃。污泥性质影响因素中,产生环节最为显著,罐底泥、污水污泥失重明显而落地油泥失重不明显,矿物质组分含量越高,挥发分转化率越低;而污泥的油源基属影响较小。升温速率越大,反应进行的越快,挥发分转化率降低。热解机理包括矿物油含氧官能团裂解,链烃及侧链上的断链,环化、芳构化以及缩合脱氢。  相似文献   

8.
以5W/%稀HCl溶液对各类城市生活垃圾衍生燃料(RDF)及其组分进行处理,考察在不同温度下快速热解生成半焦的动力学参数变化,并对半焦的比表面积和孔体积的变化和分形维数进行分析研究,试验结果发现酸洗后RDF热解速率提高,活化能降低,酸洗后半焦的比表面积和孔体积均有所减少,并随热解温度先升高而后下降,在450度附近出现极大值,对半焦的分形维数分析表明,酸洗后表面变得光滑,形成欧氏平面。  相似文献   

9.
煤微孔表面的分形维数及其变化规律的研究   总被引:4,自引:2,他引:4  
本文利用气体吸附数据确定了各种煤阶煤(从褐煤到无烟煤)和煤焦气化反应过程中微孔表面的分形维数及其变化规律。这有助于进一步认识煤的孔结构特征。  相似文献   

10.
为深入了解高硫石油焦在工业应用高温工况下的热解过程以及硫的析出特性,本研究采用高温固定床对青岛高硫石油焦进行了高温(900-1500℃)热解实验,考察了高温热解下热解气体释放规律,热解过程中焦的物理孔隙结构以及化学特性的演变,并对热解过程中硫的析出与演变特性进行了研究。结果表明,随着热解温度的升高,石油焦热解气中的H_2含量逐渐增加,CO含量变化不大,CH_4与CO_2含量则逐渐下降;热解焦的比表面积与平均孔隙均随热解温度的升高有所增加,颗粒的表面形态则受温度影响较小;热解温度的升高会降低石油焦中含有的非定型碳比例,提高其微晶结构的有序性以及石墨化程度;热解焦的气化活性随热解温度的升高先降低后升高,在1100℃附近有最小值; 1500℃高硫石油焦硫元素析出率达81.34%,仅少量硫醇类有机硫和噻吩环内的硫元素得以残存。  相似文献   

11.
甲醇处理煤的微孔性质及反应性研究   总被引:2,自引:0,他引:2  
在低于临界温度下,用甲醇处理了三种不同变质程度的煤,以研究其比表面积及微孔容积等表面特性的变化。结果表明,用甲醇处理后煤的微孔性质发生了较大变化,其变化的大小顺序是:沈北褐煤>大同烟煤>晋城无烟煤。随甲醇处理温度或干馏温度升高,煤及半焦的孔径均向小的方向偏移。煤的平均孔径为8.2—8.6A;半焦的平均孔径为6.3—7.5A。煤经甲醇处理后其半焦的反应性均比未处理的高。  相似文献   

12.
通过外添加水分改变神府煤含水量,利用高频加热炉进行快速热解,研究了含水量对神府煤快速热解过程的影响,考察了四种含水量神府煤快速热解气相产物分布及变化规律,利用孔/表面分析仪表征了固相产物的结构变化。结果表明,随着煤中含水量升高,热解气总体积和最大释放速率减小;热解焦的比表面积和孔容随含水量升高而增大,与原煤煤焦相比,含水煤制得热解焦中保留了较多小孔,孔隙结构更加发达;水分有利于抑制热解过程孔的阻塞与塌陷,提高煤焦表面的粗糙程度和多孔结构的复杂程度。  相似文献   

13.
快速热处理石油焦与煤的微观结构变化及气化活性分析   总被引:1,自引:0,他引:1  
为了研究在接近工业气化条件下石油焦和煤的结构和气化活性变化规律的差异,在滴管炉装置内,800~1 400℃对两种石油焦和一种烟煤进行快速热处理。用比表面积孔隙分析仪、XRD分析仪考察快速热处理对石油焦和煤的孔隙结构、碳微晶结构的影响,用热重分析仪考察不同温度快速热处理后石油焦和煤的CO2气化活性。结果表明,石油焦与煤相比,孔隙结构主要由微孔组成,随快速热处理温度的升高,石油焦和煤微孔比表面积和孔容均先增大后逐渐减小;快速热处理降低了石油焦和煤的石墨化程度,石油焦碳微晶结构变化主要表现在堆垛高度的变化,而煤的碳微晶结构变化在衍射峰对应的2θ002值、晶面间距和堆垛高度上均有体现;石油焦和煤的气化活性随快速热处理温度升高的变化趋势不同,但均与碳微晶结构参数(石墨化程度)的变化紧密相关。  相似文献   

14.
以麦秆和稻壳生物质为研究对象,在不同的热解温度、热解速率以及蒸汽活化温度条件下制备了生物质焦,采用比表面积与孔隙度分析仪测定生物质焦的比表面积和孔隙结构参数。利用固定床吸附装置,研究了热解温度、热解速率、活化温度和模拟烟气中SO2和NO浓度等因素对生物质焦吸附SO2和NO性能的影响。结果表明,蒸汽活化可以显著提高生物质焦的BET比表面积、D-R比表面积、D-R微孔容积和总孔容,降低其平均孔径,并显著增加蒸汽活化生物质焦对SO2与NO吸附的起始穿透时间和吸附量。快速热解下制得的蒸汽活化焦对SO2和NO的吸附效果优于慢速热解,热解温度为873 K的蒸汽活化焦的吸附性能明显好于热解温度为673与1 073 K的蒸汽活化焦。在973~1 173 K下,随着蒸汽活化温度的提高,蒸汽活化生物质焦对SO2和NO的吸附量呈现先上升后下降的趋势。随着模拟烟气中SO2与NO浓度的降低,蒸汽活化生物质焦对SO2与NO吸附的起始穿透时间延长,但相应的SO2和NO吸附量下降。在873 K、快速热解和1 073 K条件下制得的蒸汽活化麦秆焦对SO2和NO吸附量最大,其值分别为109.02和21.77 mg/g。  相似文献   

15.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

16.
废轮胎中试回转窑热解炭理化特性及应用前景   总被引:1,自引:4,他引:1  
采用中试回转窑热解装置对废轮胎进行了热解研究。在450 ℃~650 ℃温度范围内,热解炭的产率约为39%~44%,并具有高灰分(12%以上)和高硫含量特性。热解炭孔容积随热解温度升高而增大,并在550 ℃时达到最大值。在孔径约为50 nm处,热解炭的比孔容积具有最大值。热解炭在CO2和水蒸气气氛下,经活化可得到中等比表面积的活性炭(253 m2/g~306 m2/g),并具有较发达的中、大孔结构。热解炭及其活性炭对亚甲基兰和Pb2+具有良好的吸附性。热解炭作为炭黑使用时,其炭黑特性(结构性等)和硫化胶特性低于高补强N330炭黑。热解炭黑可用作中、低补强性炭黑。  相似文献   

17.
热态半焦和冷态半焦催化裂解煤焦油研究   总被引:3,自引:0,他引:3  
对比研究了热态半焦(原位热解半焦)和冷态半焦(热解后温度降至常温的半焦)对煤焦油的催化裂解特性。结果表明,相同条件下,热态煤半焦比冷态煤半焦具有更高的催化裂解焦油能力。当裂解温度为1 100 ℃,热解气体在热态半焦层中的停留时间为1.2 s时,催化裂解后燃气中焦油含量可降至100 mg/m3。BET分析结果表明,热态半焦比冷态半焦具有更大的比表面积和更发达的微孔结构。同时,在不可避免经历相对明显的高温过程中,冷态半焦的碳微晶结构有序度增加,进而导致其活性有所降低。随着气体停留时间的延长或催化裂解温度的提高,燃气中焦油含量迅速降低,但热态半焦与冷态半焦催化裂解焦油的活性差异也变小。半焦催化裂解焦油后,活性明显降低,但使这种半焦与水蒸气发生部分气化反应后,其活性基本得到恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号